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Foreword 

The National Center for Education Evaluation and Regional Assistance (NCEE) within the Institute 
of Education Sciences (IES) is responsible for (1) conducting evaluations of federal education 
programs and other programs of national significance to determine their impacts, particularly on 
student achievement; (2) encouraging the use of scientifically valid education research and evaluation 
throughout the United States; (3) providing technical assistance in research and evaluation methods; 
and (4) supporting the synthesis and wide dissemination of the results of evaluation, research, and 
products developed. 

In line with its mission, NCEE supports the expert appraisal of methodological and related education 
evaluation issues and publishes the results through two report series: the NCEE Technical Methods 
Report series that offers solutions and/or contributes to the development of specific guidance on state 
of the art practice in conducting rigorous education research, and the NCEE Reference Report 
series that is designed to advance the practice of rigorous education research by making available to 
education researchers and users of education research focused resources to facilitate the design of 
future studies and to help users of completed studies better understand their strengths and limitations. 

This NCEE Reference Report examines the differences in impact estimates and standard errors that 
arise when these are derived using state achievement tests only (as pre-tests and post-tests), study-
administered tests only, or some combination of state- and study-administered tests.  State tests may 
yield different evaluation results relative to a test that is selected, and administered, by the research 
team for several reasons.  For instance, (1) because state tests vary in content and emphasis, they also 
can vary in their coverage of the types of knowledge and skills targeted by any given intervention. In 
contrast, a study-administered test will correspond to the intervention being evaluated.  In addition to 
differences in alignment with treatment, state tests may yield divergent evaluation results due to 
differences in (2) the stakes associated with the test, (3) missing data, (4) the timing of the tests, (5) 
reliability or measurement error, and (6) alignment between pre-test and post-test. Olsen, Unlu, Jaciw, 
and Price (2011) discuss how these six factors may differ between state- and study-administered tests 
to influence the findings from an impact evaluation. 

Specifically, Olsen et al. use data from three single-state, small-scale evaluations of reading 
interventions that collected outcomes data using both study-administered and state achievement tests 
to examine this and other issues.  The authors found that (1) impact estimates based on study-
administered tests had smaller standard errors than impact estimates based on state tests, (2) impacts 
estimates from models with “mismatched” pre-tests (e.g., a state pre-test used in combination with a 
study-administered post-test) had larger standard errors than impact estimates from models with 
matched pre-tests, and (3) impact estimates from models that included a second pre-test covariate had 
smaller standard errors than impact estimates from models that included a single pre-test covariate.  
Study authors caution that their results may not generalize to evaluations conducted in other states, 
with different study-administered tests, or with other student samples. 
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A. Introduction 

1. Background 

Many evaluations of educational interventions estimate the impacts of the intervention on student 
achievement.  A key design question for these evaluations is how to measure student achievement. 
While some evaluations aim to estimate an intervention’s impacts on some specific subdomain, many 
evaluations are focused on achievement in reading or mathematics more generally.  Therefore, many 
evaluations face the challenge of deciding how to obtain general measures of reading and/or 
mathematics achievement for the students in the study sample.  

Since the passage of the No Child Left Behind Act (NCLB) in 2001, states have been required to test 
students in both reading and mathematics in every grade between grades 3 and 8, and in at least one 
grade in high school.  Furthermore, some states and districts have been willing to provide data on 
student scores on these tests for federally funded evaluations.  Several evaluations sponsored by the 
Institute of Education Sciences (IES) rely on state tests, including an ongoing evaluation of charter 
schools, an evaluation of teacher induction programs (Glazerman et al. 2010), an evaluation of 
teacher professional development in early reading (Garet et al. 2008), and a recent evaluation of the 
Student Mentoring Program (Bernstein et al. 2009). Therefore NCLB has created a new option for 
measuring student achievement in evaluations of educational effectiveness—to rely on the scores 
from state-required tests. 

In addition, many states have received federal funding to improve their state data systems.  Improved 
state data systems will help to make student test scores from state assessments more easily accessible 
for research purposes.  Under the Educational Technical Assistance Act of 2002, IES received 
funding for a grant program to support states in their efforts to improve their longitudinal data 
systems (Institute of Education Sciences 2008).  To date, 41 states and the District of Columbia have 
received at least one grant under this program.1 

There are at least four reasons for evaluators to consider relying less on study-administered tests and 
more on state tests to measure student achievement.  First, it would reduce the burden on students 
who already face substantial testing.  Second, it could substantially reduce the costs of conducting 
evaluations: testing students is expensive, while collecting state test scores is relatively inexpensive. 
Third, scores on state tests can have consequences for the students who take them, so these tests may 
elicit a higher level of effort than the “no-stakes” tests that studies administer.  Fourth, state 
assessments are the primary tool that policymakers use to assess student achievement and hold 
schools accountable for it. 

At the same time, state tests can present challenges to researchers conducting educational evaluations.  
The most notable example is that in multi-state evaluations, researchers who collect state test scores 

1 

1   See the data on the grant program’s website for more details:  http://nces.ed.gov/Programs/SLDS/ 
 
stateinfo.asp. 
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must develop a defensible approach to addressing the fact that each state has its own test.  A common 
approach is to standardize student test scores so that the impact estimates reflect effect sizes relative 
to a well-defined reference population of students in the same state.  However, whether pooling data 
from different tests can be justified, the conditions under which it is defensible, and whether pooled 
impact estimates are sensitive to the approach selected are open questions.  For a discussion of the 
issues associated with using state tests in educational evaluations, see May et al. (2009). 

In choosing between tests for any particular evaluation, we should first ask ourselves if, from a 
substantive perspective, one test is clearly preferable to the other. To answer this question, we must 
first choose the achievement domain (e.g., math or reading) and in some cases the subdomain (e.g., 
vocabulary or fluency) we hope to measure.  Then we face a choice between alternative tests that we 
believe measure the same underlying domain or subdomain.  In some studies, there may be strong 
substantive reasons to prefer one test to another test within the same domain. 

In many evaluations, there may be a group of tests in the same domain where none of the tests is 
clearly “better” for the evaluation from a substantive perspective than the other tests.  In these 
instances, the optimal choice will be heavily influenced by the relative costs of different options.  The 
current trend toward using state tests in educational evaluations is presumably driven largely by costs:  
the marginal cost of administering one additional achievement test is much larger than the marginal 
cost of obtaining state test scores for one additional student. 

However, there are two reasons why it is difficult to assess the cost implications of choosing state 
tests over study-administered tests.  First, data on the relative costs are not easily accessible.  While 
the marginal costs of administering study tests are surely many times larger than the marginal costs of 
collecting state test scores, data on these costs are not generally available in the public domain.  In 
addition, while our experience suggests that the costs of negotiating access to state assessment data 
from a state or district are non-trivial, systematic data on these costs are also not publicly available.  

Second, there is no systematic evidence on whether the parameters that determine sample size 
requirements in impact studies differ between state tests and study-administered tests.  The sample 
size requirements for Randomized Controlled Trials (RCTs) depend on key parameters such as the 
intra-class correlations and R-squares of the regression (e.g., Hedges & Hedberg 2007, Schochet 
2008b).  However, to the best of our knowledge, there is no published research on the values of these 
parameters for state assessments.  Furthermore, there is no reason to be confident that the results 
from the literature, which are based on data from study-administered tests (e.g., Jacob & Zhu 2009) 
and from pre-NCLB district tests (e.g., Bloom, Richburg-Hayes, & Black 2007), would apply to state 
tests. 

Therefore, the possibility of using state tests in education evaluations provides both opportunities for 
substantial cost savings and some challenges and uncertainties about the cost implications. 

2. Research Questions 

This report takes an important first step in assessing the consequences of relying on state tests versus 
study-administered tests for general, student-level measures of reading and math achievement in 
evaluations of educational effectiveness.  In this study, we address four research questions.  
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Question 1: Will impact evaluations in education yield different impact estimates and statistical 
precision of the impact estimates if they use state tests to measure student achievement at both 
baseline and follow-up instead of administering standardized tests at both points in time as part of 
the evaluation?  In the previous section, we identified several reasons why the two types of tests 
could yield systematically different impact estimates.  Whatever the reason, evidence that state tests 
tend to yield larger or smaller impact estimates than study-administered tests would justify a 
reassessment of how large the impacts of educational interventions must be to be considered 
educationally meaningful. For example, if the impacts of different middle school math curricula tend 
to be twice as large for study-administered tests as for state tests, it would make no sense to set 
standards for judging the magnitude of the impact estimates that are the same for both types of tests.  
In contrast, if there were systematic empirical evidence indicating that differences in impacts between 
the two types of tests are small and random, then the choice between the two types of tests in any 
evaluation would be less important, and we would ignore the distinction when interpreting the results 
from educational evaluations that vary in the type of test they chose to use.  

In addition, evidence suggesting that state and study-administered tests yield systematically different 
impact estimates or standard errors would have implications for the sample size requirements of 
individual studies and the overall cost of a research portfolio that relies on state test scores.  If one 
type of test yields smaller impacts than the other type of test, evaluations will need larger samples to 
detect impacts for the test that yields smaller impacts than for the test that yields larger impacts.  For 
example, suppose that the impact estimates from state tests tend to be smaller than the impact 
estimates from study-administered tests (e.g., if state tests are less “well-aligned” to the intervention). 
Under this scenario, we would need larger samples to detect impacts using state test scores than to 
detect impacts using study-administered test scores.  In addition, if one type of test yields less precise 
impact estimates than the other (holding sample size constant), evaluations will need larger samples 
to detect impacts of a given size for the test that yields less precise estimates.  For example, suppose 
that holding the sample size constant, state tests yield impact estimates with larger standard errors 
than do study-administered tests.  This would suggest we need larger samples in evaluations that rely 
on state tests than in evaluations that rely on study-administered tests.   

Question 2: Does measuring student achievement using one type of test at baseline and another 
type of test at follow-up reduce the statistical precision of the impact estimates? The precision of 
the impact estimates depends on the R-square of the regression and thus on the correlation between 
pre-test scores and post-test scores.  Furthermore, we would expect a lower pre-post correlation for a 
“mismatched” pre-test (e.g., a pre-test that differs from the post-test, like a state pre-test for a study-
administered post-test) than for a “matched” pre-test.  Therefore, other things held constant, we would 
expect less precise impact estimates or larger sample size requirements when studies choose a 
mismatched pre-test than when they choose a matched pre-test.  

Differences in precision may have sample size and thus cost implications for educational evaluations.  
Studies that use a mismatched pre-test may require a larger sample to aim to detect impacts of a given 
size than if they had instead used a matched pre-test. However, the magnitude of this difference is an 
empirical question.  
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Question 3: Does controlling for both types of student achievement measures at baseline (i.e., pre-
test scores) increase the statistical precision of the impact estimates?  A richer set of control 
variables will increase the R-square of the impact regression, increase the precision of the impact 
estimates for a fixed sample size, and reduce the study’s sample size requirements.  Therefore, an 
obvious question is whether controlling for baseline measures of achievement from both study-
administered tests and state tests increases the R-square of the regression and yields more precise 
impact estimates than controlling for only one of the two achievement measures.  If so, studies could 
be conducted with smaller samples if they would collect baseline achievement scores from both types 
of tests. 

Question 4: Can using both types of student achievement measures at follow-up (i.e., post-test 
scores) increase the statistical precision of the impact estimates? Under some conditions, collecting 
multiple outcome measures in the same domain may lead to more precise impact estimates.  For 
multiple outcomes in the same domain, Schochet (2008b) proposes constructing composite outcomes 
by averaging the scores on the individual tests, and basing the “confirmatory” impact analysis on the 
composite measures.  Under certain conditions, composite outcome measures will produce more 
reliable outcome measures, reduce the variance of the measurement error, produce more precise 
impact estimates, and reduce the sample size requirements of the study. 

To see this, suppose the two tests were as similar as two different forms of the same test.  If the two 
forms had equal reliability, we would expect the average of the two scores to provide a more reliable 
measure of student achievement than a student’s score from either test individually. 

However, study-administered reading tests and state reading tests are not different forms of the same 
test, and they may not have equal reliability.  Therefore, it is not clear whether we should expect more 
precise impact estimates from simple averages of scores from the two tests than from either test alone.  

The remainder of this report will proceed as follows.  In Section B, we discuss the possible reasons 
why the choice between state and study-administered tests may affect the impact estimates or their 
standard errors. In Section C, we describe our data and methods.  In Section D, we report the results 
from the analysis.  In Section E, we offer some concluding thoughts and suggestions for future 
research.  
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B. Why the Choice between Tests May Matter in 
Educational Evaluations 

This section provides a conceptual or theoretical assessment of how the choice between tests could 
affect the impacts we estimate, the precision with which they are estimated, or both.  In this section, 
we first specify the types of models that researchers typically estimate in educational impact 
evaluations. We then use these models to provide a framework for the discussion that follows.  This 
discussion introduces six factors that may influence an evaluation’s sample size requirements, the 
magnitude of the impact estimates, or both:  (1) reliability or measurement error, (2) missing data, (3) 
alignment between pre-test and post-test, (4) the timing of the tests, (5) alignment between treatment 
and post-test, and (6) the stakes associated with the test.   

Models for estimating the impacts of educational interventions.  To assess the potential 
consequences of selecting different measures of student achievement, it is helpful to specify one or 
more formal models of the type we estimate in educational impact evaluations. In an unclustered 
design, for which the unit of random assignment is the same as the unit of analysis (e.g., random 
assignment of students within schools), a standard model of student achievement can be expressed as 
follows: 

(1) Y = β + β Ti + β X + ε ii 0 1 2 i 

where Yi  is the outcome of interest (i.e., post-test) for student i, Ti  is the treatment indicator of 

student i (equals 1 for students assigned to treatment and 0 for those assigned to control), X i is the 

value of the pre-test variable for student i, and ε i is the usual student-level error term. 2  Schochet 

(2008a) and others show that the variance of the impact estimate ( β̂1 ) from this regression can be 

represented as: 

σ 2 (1 − R 2 )
(2) Var(β̂1 ) = 

NT (1− T ) 

where σ 2  is the variation in the outcome of interest across students, R2  is the R-square of the 

regression model (i.e., the proportion of the total variation that is explained by the pre-test variable), 

N is the total number of students, and T  is the proportion of students assigned to the treatment 
group.  Equation 2 shows that the variance of the impact estimate is simply a function of the 

unexplained variance in the outcome variable ( σ 2 (1− R2 ) ). 

5 

2   For simplicity and without loss of generality, we consider an impact model that includes only the pre-test as 
a covariate. 



 

 

 

   

 
 

 

 

 

   

 
 

 
 

 
 

  

 

In a two-level clustered design, where the unit of random assignment is at a higher level (e.g., school 
or classroom) than the unit of analysis (e.g., student), the impact regression model can be expressed 
as follows: 

(3) Yij = γ 0 + γ 1Tj + γ 2 X ij + μ j + ε ij 

where Yij  is the outcome for student i in cluster j, Tj  is the treatment indicator for cluster j and X ij is 

the pre-test variable for student i in cluster j. The cluster-level and student-level terms, μ j and ε ij 

respectively, are assumed to be independent of each other and of the covariates in the model.  

In a clustered design, the variance of the impact estimate ( γ̂ 1 ) can be calculated using the following 

formula (Murray 1998, Schochet 2008a, Spybrook et al. 2009): 

2 2 2 2σ (1− R ) σ (1− R )c c s s(4) Var(γ̂ ) = +1 JT (1− T ) JnT (1− T ) 

where J is the number of clusters, n is the number of students per cluster, and T  is the proportion of 
clusters assigned to the treatment group.  The variance of the treatment effect can be decomposed into 
the contribution due to variation across clusters and the contribution due to variation within clusters.  

At the cluster level, σ c 
2  denotes the cluster-level variance (i.e., the variance of μ j ), and Rc

2 is the 

proportion of the cluster-level variance explained by the pre-test variable.  At the student level, σ s 
2 

denotes the student-level variance (i.e., the variance of ε ij ), and Rs
2  is the proportion of the student-

level variance explained by the pre-test variable.   

Reliability or measurement error.  Reliability is defined as the proportion of a measure’s variability 
that is free of measurement error.  Measurement error in either the outcome variable (post-test) or in 
the pre-intervention measure of the outcome variable (pre-test) will increase the sample size 
requirements of the study to detect impacts of a given size.  Whether state or standardized tests tend 
to be more reliable is an open question, and we would conjecture that there is far more variability 
within each of these broad categories of tests than between categories.  Nonetheless, given the 
feasible test options for a particular evaluation, differences in the amount of measurement error could 
have important implications for an evaluation’s sample size requirements. 

Research on the role of measurement error in estimation has a long history in both the psychometric 
literature (e.g., Sutcliffe 1958, Williams & Zimmerman 1995) and the econometrics literature (e.g., 
Griliches & Hausman 1986, Bound & Krueger 1991).  The seemingly most benign form of 
measurement error is referred to by econometricians as “classical measurement error,” in which the 
error is normally distributed with mean zero and constant variance—and is uncorrelated with any of 
the independent variables in the model.  However, even classical measurement error can have 
unfortunate consequences for studies of the impacts of educational interventions.  
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Based on a careful examination of standard variance formulas in Equations 2 and 4, we reach two 
conclusions about the effects of classical measurement error on the precision of the impact estimate: 

1.	 Classical measurement error in the post-test variable will reduce the precision of the 
impact estimate, holding the sample size constant, and increase the sample size 
required to detect impacts of a given size.  This is consistent with the results from the 
econometrics literature (e.g., Angrist & Krueger 1999) and the psychometric literature 
(e.g., Williams & Zimmerman 1995) and it can be demonstrated formally using the 
variance formulas in Equations 2 and 4. For example, consider an unclustered design, and 
suppose we normalize the outcome variable to have a variance equal to 1.  Under this 
scenario, an increase in the classical measurement error of the outcome variable, holding 

R 2its total variance constant, decreases the  value since it decreases correlation between 
pre-test scores and post-test scores. Holding other factors constant, this increases the 
variance of the impact estimate (see Equation 2).3  Similarly, in a clustered design, 

classical measurement error in the outcome at the cluster level decreases Rc
2 , and 

measurement error in the outcome at the student level decreases Rs
2 , thereby decreasing 

the precision of the impact estimates. 

2.	 Classical measurement error in the pre-test variable will also reduce the precision of 
the impact estimate and increase the sample size requirements of the study.  As with 
classical measurement error in the post-test variable, classical measurement error in the 
pre-test variable will reduce the correlation between pre-test scores and post-test scores, 
reduce the R-square of the regression, and decrease the precision of the impact estimate.  
More specifically, classical measurement error will reduce the R-square of the regression 

model in unclustered designs ( R 2  in Equation 2) and the “within-cluster” R-square in 

clustered designs ( Rs
2 in Equation 4), which reduces the precision of the impact estimates 

(holding the total outcome variance constant).   

We show below that classical measurement error in pre-test scores or post-test scores will not bias 
the estimated impact of the treatment in studies that randomize units to treatment or control 
conditions. Classical measurement error in an independent variable will bias the estimated coefficient 
on the mismeasured variable toward zero (Angrist & Krueger 1999).  However, the key question for 
impact evaluations is whether measurement error in one independent variable (e.g., a pre-test 
covariate) yields bias in the estimated coefficient on a different independent variable (e.g., the 
treatment indicator).   

We show that the answer to this question depends on the study’s research design.  In general, since 
the covariates may be correlated with the treatment, it can be shown that measurement error leads to 
bias in the estimated treatment effect.  However, in experimental studies, randomization ensures that 

In studies where the variance of the outcome variable is not normalized to 1, classical measurement error 
also increases the variance of the impact estimate through an increase in the variance of the outcome 

variable (σ 2 ). 
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in expectation, the treatment will be uncorrelated with the covariates, and we show below that this 
ensures that the estimated treatment effect will be unbiased even if the covariates suffer from 
measurement error. 

To see this, consider the following formula for the treatment effect (see Equation 1): 

β − β βY |T Y |X X |T
(5) β1 = 

21− RX |T 

where βY |T  is the bivariate regression coefficient for the regression of the outcome variable (i.e., the 

post-test variable) on the treatment indicator, βY |X  is the bivariate regression coefficient for the 

regression of the outcome variable on the covariate in the model (i.e., the pre-test variable), β X |T is 

the bivariate regression coefficient for the regression of the covariate on the treatment indicator, and 

RX 
2

|T  is the R-square of that regression model. 

Because randomization ensures that the pre-test and treatment variables are uncorrelated with each 

other, β X |T and RX 
2

|T  are both zero in experimental studies.  Therefore, with random assignment, 

Equation 5 simplifies to Equation 6: 

(6) β1 = βY |T 

Equation 6 indicates that the underlying treatment effect parameter that we estimate from a regression 

with the pre-test as a covariate ( β1 ) is identical to the treatment effect parameter that we estimate 

from a regression that excludes the pre-test ( βY |T )—or put differently, is equal to the expected mean 

difference between the treatment and control groups.  Furthermore, this conclusion holds regardless 
of the amount of measurement error in either the pre-test or the post-test.  Therefore, we conclude that 
classical measurement error in the pre-test does not create any bias in the estimated treatment effect. 

At the same time, it is important to note that measurement error in test scores may not be “classical” 
or random.  Since there are an infinite number of types of non-random measurement error, we cannot 
make any general statements about how non-random measurement error would affect the magnitude 
of the impact estimates or the precision of those estimates.  However, some forms of non-random 
measurement error lead to biased impact estimates.  For example, suppose that an intervention has a 
positive effect on student achievement and reduces the fraction of students who are at risk of “failing” 
a particular achievement test.  Furthermore, suppose teachers “cheat” and provide extra assistance 
during the testing time to students at risk of failing the test.  Under this scenario, teacher cheating 
would lead to more systematic (and positive) measurement error in the control group than in the 
treatment group, and the estimated impact would be biased toward zero. 

Finally, May et al. (2009) raise particular concerns about the reliability of state tests that would lead 
to non-random measurement error, such as their reliability for very low-scoring students whose level 
of achievement falls far below the threshold for proficiency set by the state.  While these concerns are 
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valid, it is an open question whether, in practice, state tests tend to produce more or less reliable 
measures of achievement than the study-administered standardized tests that researchers often choose 
for their studies. 

Missing data.  Missing data in either the outcome variable (post-test) or in the pre-intervention 
measure of the outcome variable (pre-test) can introduce bias in the impact estimates, alter the sample 
so that the impact estimates characterize a different population than initially intended, and increase 
the sample size requirements of the study due to the loss of sample.  Therefore, if the missing data 
rates or patterns are likely to differ substantially between state and study-administered tests, the 
choice between these two options could have important implications for the internal validity of the 
study design and the costs of the evaluation.  

For state test scores, the rate and pattern of missing data will depend on state testing policies, the 
amount of student mobility across states, and even the amount of student mobility within states if 
state test scores are collected from schools or districts instead of from states.4  For study-administered 
tests, missing data rates may also depend on student mobility, since study tests are usually 
administered in or near participating schools, and the missing data problem may be more serious than 
for state tests if any movement out of a participating school leads to study attrition.  However, 
missing data for study-administered tests may also depend on the requirements associated with 
informed consent (e.g., passive versus active consent) and on factors that affect a student’s 
willingness to take the test and parental willingness to allow it (e.g., financial incentives, the 
convenience of the testing site, or the level of encouragement from school officials to participate in 
the evaluation). 

If data on either pre-test scores or post-test scores are Missing Completely at Random (Rubin 1976), 
and researchers delete cases with missing values, the size of the analysis sample and the precision of 
the impact estimates will depend on the missing data rate.5  Loss of sample for purely random reasons 
has the same effect as simple random sampling:  the sample size is reduced and statistical power is 
reduced. In unclustered designs, missing data increases the variance of the impact estimate by 
reducing the number of students in the analysis sample (see Equation 2). In clustered designs, missing 
data can increase the variance of the impact estimate by reducing either the number of clusters, if data 
are missing for entire classes or schools, or the number of students per cluster, if data are missing for 
individual students within clusters.  To compensate, evaluations need to select a larger initial sample 
to achieve any pre-specified level of precision (e.g., Minimum Detectable Effect Size).   

If data on either pre-test scores or post-test scores are not Missing Completely at Random, the story is 
more complicated.  While a summary of the methods to address more problematic forms of missing 
data is beyond the scope of this report, readers may want to review selected scholarly papers (e.g., 

4 While districts will typically be able to provide state test score data for students who change schools within 
the district, only states will be able to provide state test score data for students who change districts within 
the same state. 

5 While imputation would seem to be a more appealing option than case deletion to avoid the loss of sample, 
simulations in Puma et al. (2009) suggest that imputation methods do not always yield more precise impact 
estimates than case deletion. 
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Rubin 1976, 1987, 1996), papers that summarize missing data methods for empirical researchers (e.g., 
Graham 2009, Schafer 1999, Allison 2002), and a recent technical methods report focused on missing 
data in random assignment studies in education (Puma et al. 2009).   

However, it is clear that when pre-test scores or post-test scores are missing for some cases on a non-
random basis, biased impact estimates can result (e.g., Puma et al. 2009).  Bias can result from a 
missing data mechanism that leaves us with an analysis sample of students, those with non-missing 
test scores, for which there are systematic differences between the treatment and control groups.  Bias 
can also result from a missing data mechanism that leaves us with an analysis sample of students that 
is not representative of the population of interest.  

To the best of our knowledge, there is no empirical evidence on whether state tests tend to yield more 
or less bias from missing data than commonly used study-administered tests (using conventional 
procedures for administering these tests in educational evaluations).  However, if one approach to 
collecting achievement data does systematically yield greater missing data bias than the other 
approach, this should be an important factor in choosing between collecting state test scores and 
administering a test as part of the evaluation.  

Alignment between pre-test and post-test.  It is well known that pre-test scores can make an 
important contribution to RCTs by increasing the precision of the impact estimates and reducing the 
evaluation’s sample size requirements (e.g., Bloom et al. 2007). The gain in precision from including 
pre-test scores in the model depends on the R-square of the regression—or better put, on the increase 
in the R-square from including the pre-test variable as a covariate in the model.  For example, Bloom 
et al. (2007) provides estimates of the precision gains from including pre-test covariates in the model 
for studies that randomize schools to experimental conditions.  

The choice between pre-tests with different levels of alignment with the intervention may have 
important implications for the sample size requirements of the study.  Consider two different tests, 
one that is well-aligned with the post-test, perhaps because it is a different form of the same test, and 
another which is not so well-aligned with the post-test.  In this scenario, we would expect the well-
aligned pre-test variable to be more highly correlated with the post-test, yield a larger R-square in the 
regression model, and produce impact estimates with smaller standard errors than the pre-test variable 
that is less well-aligned.  

This analysis has potentially important implications for the choice between study-administered pre-
tests and pre-test scores from state assessments.  In general, other things being equal, we would 
expect an evaluation to have larger sample size requirements if the evaluation chooses to collect pre-
test scores from state assessments when post-test scores are obtained from a study-administered test, 
or vice versa, than if both pre-test and post-test scores come from the state test.  

To the best of our knowledge, there is no empirical evidence on the consequences of choosing a state 
pre-test for a study-administered post-test, or vice versa.  However, Bloom et al. (2007) present 
related evidence.  The authors found that pre-tests that are mismatched with respect to subject area 
(e.g., a math pre-test for a reading post-test) can sometimes result in significantly less statistical 
power and significantly higher sample size requirements than tests that are matched on subject area 
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  This phenomenon could be exacerbated by summer learning loss.  If summer learning loss were constant 

across the sample, it would have no affect on correlation between  pre-test scores and post-test scores.  
However, if  summer learning  loss varied across individuals, we would expect this to  reduce the pre-post  
correlation in test scores (relative to measuring post-test scores just prior to the summer). In  practice, if 
summer learning loss reduces the pre-post correlation in test scores, it will reduce the R-square of the 
regression and reduce the precision of the resulting impact estimates.  

(e.g., a reading pre-test for a reading post-test).  However, whether mismatched pre-tests from the 
same subject area, or domain, yield substantially less precise impact estimates is an open question. 

Timing of the test.  The timing of the pre-tests and post-tests may affect the estimated impacts and 
their standard errors. Since state testing is an important activity, few schools would agree to 
participate in a study that requires study-related testing during the time in which state tests are 
scheduled to be administered. Therefore, study-administered tests need to be administered either 
before or after state testing. 

For post-tests, conducting study testing before the state tests leaves a shorter follow-up window, 
while conducting it after the state tests produces a longer follow-up window. If shorter-term impacts 
tend to be smaller than longer-term impacts, we might expect larger impacts from later tests than from 
earlier tests. However, the implications of the timing of the test for the magnitude of the impacts 
could depend on the nature of the intervention and the pattern of impacts over time. 

For pre-tests, the story may be clearer.  While state pre-test scores always come from tests taken in 
the previous spring, study pre-tests are often administered in the fall after students return to school. If 
later pre-tests reduce the length of the follow-up period, this may increase the correlation between 
pre-test scores and post-test scores, which could increase the R-square of the impact regression, 
increase the precision of the impact estimates for fixed sample, and reduce the sample size 
requirements of the study.  

Shorter follow-up windows may have implications for the precision of the impact estimates as well.  
For example, consider two design options, both of which involve a post-test administered in May. 
Under Option A, the study will rely on a pre-test from the previous May; under Option B, the study 
will rely on a pre-test score from September after students return to school.  Other things being equal, 
we would expect the correlation between pre-test and post-test to be larger for Option B than Option 
A because the amount of time between tests is shorter.6  Furthermore, if the pre-post correlation is 
larger for Option B than for Option A, we would expect the R-square of the impact regression to be 
higher and sample size requirements to be lower under Option B than under Option A. 

As shown in Schochet (2008c), fall pre-testing can generate biased impact estimates if pre-testing 
occurs after treatment group members are first exposed to the intervention.  If the intervention has 
positive effects on achievement very shortly after the intervention is introduced, and before the pre-
test is administered, the intervention will affect the pre-test scores of students in the treatment group. 
Under this scenario, the impact estimates will be biased toward zero (see Schochet 2008c).  When 
study pre-tests are administered in the fall, and after the start of the intervention, we would expect 
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study-administered pre-tests to yield smaller impact estimates than state pre-tests administered in the 
spring (other things being equal).   

Alignment between treatment and post-test.  Education researchers often worry about selecting 
tests that are insufficiently aligned to the intervention under the fear that the study will fail to capture 
the effects of the intervention.  On the other hand, education researchers sometimes worry about 
selecting tests that are overly aligned to the intervention so that we would expect a positive impact 
almost by construction.  In general, we would expect larger impacts on post-tests that are better 
aligned to the intervention than on post-tests that are less well-aligned to the intervention. For 
example, consider an intervention that is designed to boost reading comprehension, but that does not 
focus on vocabulary.  In this instance, we might expect to find larger impacts on tests of reading 
comprehension than on general reading achievement tests that measure reading comprehension, 
vocabulary, and perhaps other subdomains.   

However, even if we focus on achievement measures in the same domain or subdomain, different 
tests may weigh the subdomains differently.  Returning to our example from the previous paragraph, 
if an intervention has a positive effect on reading comprehension but no effect on vocabulary, its 
effect on general measures of reading achievement will depend on how the two subdomains are 
weighted in constructing an overall score.  We would expect this intervention to have larger effects on 
general reading achievement tests that give more weight to the subdomains affected by the 
intervention and less weight to the subdomains not affected by the intervention. 

We have no theoretical or empirical basis for expecting state tests to be consistently better aligned, or 
consistently worse aligned, with the interventions we study than study-administered tests.  Of course, 
we would expect study-administered tests that are narrow in their scope and chosen to be well-aligned 
to the intervention (e.g., a nationally normed vocabulary test for a vocabulary-focused intervention) to 
produce larger impact estimates on average than broader tests of achievement of any type.  However, 
among broad tests of reading or mathematics achievement, we have no priors on whether state tests or 
study-administered tests in the same domain will tend to be better aligned with the interventions we 
evaluate. On the one hand, we might expect researchers to select broad study-administered tests that 
give substantial weight to the subdomains on which the intervention focuses.  On the other hand, if 
the intervention was developed to boost student performance relative to particular state standards, and 
the intervention is being tested and evaluated in the same state, the state test may be more closely 
aligned to the intervention than any of the possible study-administered tests. 

Stakes associated with the test.  Different tests vary in the stakes associated with student 
performance on the tests.  State tests are linked to state accountability systems, and these tests have 
high stakes for schools, especially those that are close to the threshold for making Adequate Yearly 
Progress. In some states (e.g., Texas), state tests also have high stakes for students and can affect 
whether students advance to the next grade level.  In contrast, students have little incentive to perform 
well on study-administered tests.  Student scores on these tests have no effect on the students who 
take them.  Given the differences in incentives, we would expect that students in general exert more 
effort on state tests than on study-administered tests.  

It is not clear how the stakes associated with the post-test would affect the estimated impacts or the 
precision with which they are measured. We can imagine simple models under which the stakes 
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associated with the test affect neither the impact estimates nor the precision of the impact estimates. 
Consider two different tests that are identical except for the stakes associated with the outcomes (or 
consider two different administrations of the same test, one with high stakes attached and the other 
with low stakes attached). Furthermore, suppose that (1) test stakes have a constant positive effect on 
effort exerted in taking a test, and (2) the effort exerted on the test has a constant positive effect on 
student test scores. Under this model, we would expect to find higher scores on high-stakes tests than 
low-stakes tests, no difference in the reliability of individual scores between the two tests, no 
difference in impacts between the two tests, and no difference in the precision of the two impact 
estimates between the two types of tests.   

However, under other models, the stakes associated with the test could differentially affect student 
test scores in the treatment and control groups, which would lead to different impacts.  For example, 
suppose the effect of additional effort varies with student achievement at the time the test is 
administered.7  Furthermore, suppose that at the time the post-test is administered, scores are higher 
for the treatment group than for the control group—that is, the treatment had a positive effect on 
student achievement.  Under this scenario, raising the stakes associated with a test could affect the 
effort exerted by both groups equally, but affect their post-test scores unequally, because the effect of 
additional effort on student test scores may not be the same for the higher-scoring treatment group 
than for the lower-scoring control group.  

In addition, under some scenarios, the stakes associated with the test may affect the precision of the 
impact estimates through the reliability of the test scores.  Suppose that when the stakes associated 
with a test’s outcome are low, students are inclined to guess randomly on some questions which they 
could answer correctly, without guessing, simply to conserve effort.  Furthermore, suppose that as the 
stakes associated with the test increases, student effort increases, and the fraction of questions for 
which the student will guess randomly decreases. Since random guessing introduces random 
measurement error into students’ test scores, we would expect a positive relationship between the 
stakes of the test and reliability of the test scores. If increasing the stakes associated with the post-test 
increases the reliability of the post-test scores, we would expect it to increase the precision of the 
impact estimates (see the subsection earlier in this section titled “Reliability or measurement error”). 

We are not aware of any empirical evidence on the effect of the stakes associated with achievement 
tests on student effort, or on the effects of test-taking effort on student test scores.  This means that we 
have no prior expectations on whether to expect educational interventions to have larger impacts on 
higher-stakes tests or on lower-stakes tests. In addition, we are not aware of any empirical evidence 
on the relationship between the stakes associated with the test and the reliability of the test score 
measures, which affects the precision of the impact estimates. Therefore, the effect of testing stakes 
on the precision of the impact estimates in educational evaluations is unknown at this time. 
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C. Research Questions, Data and Analysis Methods 

This section describes the research design for the study, the data used in the analysis, and the methods 
that we used to address the four research questions specified in Section A.  

1. Research Questions and Hypotheses 

This study addresses the four questions presented in Section A: 

Question 1: Will impact evaluations in education yield different impact estimates and statistical 
precision of the impact estimates if they use state tests to measure student achievement at both 
baseline and follow-up instead of administering standardized tests at both points in time as part of 
the evaluation?  To address this question, we conduct formal statistical tests of whether relying on 
study tests yields different impact estimates and standard errors than relying on state tests.   

Question 2: Does measuring student achievement using one type of test at baseline and another 
type of test at follow-up reduce the statistical precision of the impact estimates?  To address this 
question, we conduct a formal statistical test of whether “mismatched pre-tests” (i.e., a state pre-test 
for a study-administered post-test, or vice versa) yield less precise impact estimates than matched pre-
tests. 

Question 3: Does controlling for both types of student achievement measures at baseline (i.e., pre-
test scores) increase the statistical precision of the impact estimates? To address this question, we 
conduct a formal statistical test of whether a second pre-test in the same domain increases the 
precision of the impact estimates.   

Question 4: Can using both types of student achievement measures at follow-up (i.e., post-test 
scores) increase the statistical precision of the impact estimates? To address this question, we 
conduct a formal statistical test of whether models that specify the average score between the two 
post-tests as the outcome variable yield more precise impact estimates than models that specify either 
post-test individually as the outcome variable. 

The four research questions, along with the hypotheses we test, are listed in Table 1. 

2. Data 

For this study, we needed data from one or more evaluations with four variables:  (1) post-test scores 
from a study-administered achievement test, (2) post-test scores from state tests in the same domain 
as the study-administered post-test, (3) pre-test scores from the same study-administered test used to 
measure outcomes, and (4) pre-test scores from the same state tests used to measure outcomes.  To 
obtain the necessary data, we selected three previously completed random assignment studies in 
education. See Table 2 for a summary of these studies.   
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Each of these three studies randomized classrooms to treatment or control conditions. In addition, 
each study drew its sample from a single district.  However, from this point forward, we will refer to 
each study by the state in which the district is located—Arizona, California, or Missouri.8 All three of 
these studies were conducted by Empirical Education, Inc.9 For descriptions of the three studies and 
their data, see Appendix A.10 

Table 1: Research Questions and Hypotheses to be Tested 

Research Question 
Hypothesis 

1. Will impact evaluations in education yield different 
impact estimates and statistical precision if they use 
state tests to measure student achievement at both 
baseline and follow-up instead of administering 
standardized tests at both points in time as part of the 
evaluation?  

1a. Relying on study tests yields different impacts 
than relying on state tests. 

1b. Relying on study tests yields different standard 
errors than relying on state tests.  

2. Does measuring student achievement using one type 
of test at baseline and another type of test at follow-up 
reduce the statistical precision of the impact estimates?  

2. Mismatched pre-tests yield larger standard 
errors than matched pre-tests. 

3. Does controlling for both types of student 
achievement measures at baseline (i.e., pre-test 
scores) increase the statistical precision of the impact 
estimates? 

3. A second pre-test in the same domain reduces 
the standard error of the impact estimates.  

4. Can using both types of student achievement 
measures at follow-up (i.e., post-test scores) increase 
the statistical precision of the impact estimates?   

4. Models that specify the average score between 
the two post-tests as the outcome variable yield 
smaller standard errors than models that specify 
either post-test individually as the outcome 
variable. 

8	 The California study included a sample that spanned several states. However, in this study, state test score 
data were collected only in California.  In Missouri, state pre-test scores were unavailable, so the study 
used scores from a district-required test instead. 

9	 The results from the California study were published in Miller et al. (2007).  The results from the other two 
studies are proprietary and were not publically released. 

10	 The data collected for these studies are owned by the school systems involved and are not generally 
available for use by researchers. However, Empirical Education has an agreement with each school district 
to use these data for research purposes. 
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Table 2: Summary of the Data from the Three Evaluations Selected for This Study 

State Study Test State Test 
Unit of 

Randomization 
Grade 
Levels 

Number of 
Classrooms 

Number of 
Students 

AZ NWEA-MAP AIMS Classes 3-5 15 98 

CA NWEA-ALT CST Classes 3-5 20 564 

MO NWEA-MAP Missouri Assessment 
Program 

Classes 7-8 28 567 

Note:  For the full names of the tests, see the accompanying text. For more details on these three studies, see Appendix 
A. 

An important limitation of these studies is that they are based on relatively small samples.  In fact, our 
analyses suggest that the impact estimates in all three studies were statistically insignificant.  
However, this does not mean that the impacts were zero.  We address the limitation of small sample 
sizes in each of the three studies by designing our confirmatory analysis to benefit from the combined 
sample from the three studies, as described later in this section.  The significant differences reported 
in Section D suggest that the data and methods used for this study had adequate power for the 
analyses that we conducted.  This means that while the sample size for each of the three studies was 
small, the combined sample was adequate for our purposes. 

The three studies are, in effect, a convenience sample of studies that met the requirements for our 
methodological study.  Each study collected scores from the state test used to measure student 
achievement in reading: Arizona’s Instrument to Measure Standards (AIMS), the California 
Standards Test (CST), and the Missouri Assessment Program.11 

With one exception, the studies collected both pre-test scores and post-test scores from the state tests.  
In Missouri, the study did not obtain state pre-test scores and instead collected pre-test scores from a 
district-required reading test. This limitation led us to exclude Missouri from some of the analyses— 
in particular, the analysis to address Question 2—as we describe and justify later in the report. 

In addition, each of the three studies collected an additional baseline and follow-up measure of 
reading achievement by administering a reading achievement test offered by the Northwest 
Evaluation Association (NWEA).  The studies in Arizona and Missouri administered NWEA’s 
Measures of Academic Progress (MAP) reading test, a computer adaptive test that is often used for 
formative assessment (Northwest Evaluation Association 2003).  The study in California 
administered NWEA’s Achievement Level Test Series (ALT), which is a paper and pencil adaptive 
test (NWEA 2003).  For the sake of simplicity, we will refer to both tests as the MAP test in the 
remainder of this report.12 

11	 Each of the three studies collected student-level scale scores (not just their proficiency levels as defined by 
state accountability standards).   

12	 For more information about the MAP, see the NWEA website:  www.nwea.org/products-
services/computer-based-adaptive-assessments/map. For more information about the ALT, again see the 
NWEA website:  www.nwea.org/support/article/711. NWEA claims the MAP and the ALT can be used 
interchangeably (Kingsbury 2001). 
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To describe the test scores data used in our analysis, we conducted a descriptive analysis.  For the 
estimated correlations between MAP scores and scores on the state and district assessments, see Table 
3. These correlations show the strength of the linear relationship between the scores on the two tests. 
For scatterplots of the test score data, see Appendix B.  For cross-tabulations or contingency tables 
between quartiles in the distribution of MAP reading scores and quartiles in the distribution of state or 
district reading scores, see Appendix C. 

One important question about the MAP is whether it was highly aligned, or even “overaligned,” with 
the interventions being tested. If so, the results from this study might not be generalizable to 
evaluations that choose more general achievement measures, like many large-scale evaluations 
conducted by the Institute of Education Sciences (IES). In fact, the MAP was selected for these three 
studies to a large extent for ease of implementation, and not because the researchers expected the 
MAP to be especially closely aligned with the interventions being studied.13 In addition, none of the 
interventions tested in these three studies were developed by the NWEA, which developed the MAP. 
Finally, if the study test were overaligned with the interventions, we would expect to see larger 
impacts on MAP post-test scores than on state post-test scores. However, as we show later, the 
difference in impacts was statistical insignificant. Therefore, there is no reason to believe that the 
MAP is overaligned with the interventions tested in these three studies. 

Table 3: Correlations between MAP Reading Test Scores and State Reading Test Scores 

State 

Pre-test Scores Post-test Scores 

Control 
Group 

Treatment 
Group Pooled 

Control 
Group 

Treatment 
Group Pooled 

Arizona 
.60 

(n=41) 

.70 
(n=127) 

.52 
(n=186) 

.57 
(n=32) 

.76 
(n=151) 

.55 
(n=175) 

.57 
(n=73) 

.76 
(n=278) 

.55 
(n=361) 

.53 
(n=41) 

.84 
(n=127) 

.73 
(n=186) 

.69 
(n=32) 

.82 
(n=151) 

.69 
(n=175) 

.60 
(n=73) 

.83 
(n=278) 

.71 
(n=361) 

California 

Missouri 

Notes:  In Missouri, the study relied on pre-test scores from the district test instead of the state test. The p-value for each 
of these correlations is less than .001. 

Another important question about the MAP is whether it is more highly aligned with state tests than 
are the tests selected for most large-scale impact evaluations. If this were true, our study results would 
be biased toward finding no differences in impact estimates and standard errors between study and 
state tests. One possible concern arises from the fact that the MAP is often used as a formative 
assessment to predict student performance on state assessments.  Therefore, we might worry that the 
MAP was designed to be more closely aligned with state tests than other study-administered tests that 
are not used as formative assessments. 

13 This claim is based on correspondence with researchers at Empirical Education, which conducted all three 
studies. 
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To assess this possibility, we assembled evidence on the correlations between scores on different tests 
in different states. If the MAP were more closely aligned with state tests than other study tests, we 
would expect the correlation between MAP and state test scores to be higher than the correlation 
between state test scores and scores from other study-administered tests. The correlations we 
assembled from the literature are reported in Appendix J. In summary, we find no evidence that the 
alignment with state assessments is substantially greater for the MAP than for other study-
administered tests.  

Another possible concern arises from the fact that, in Arizona and Missouri, the “generic” form of the 
MAP test was customized with the goal of making it more closely aligned to state standards. If this 
effort had much effect on the MAP’s alignment with state standards in those states, then we would 
expect the correlation with state test scores to be higher in the Arizona and Missouri studies than in 
the California study.  However, the correlations presented in Table 3 provide no evidence that the 
MAP’s alignment with state assessments was greater in Arizona and Missouri than in California, 
where the generic form of the MAP was used.  

Finally, to understand the data used in this study, it is important to note that all three evaluations 
tested interventions that were designed to improve reading achievement.  However, the three studies 
used in this analysis tested the effectiveness of three different interventions. Two of the three 
interventions were clearly interventions focused on reading instruction.  While the third intervention 
was focused on science, it had a reading component.  The interventions tested in the three evaluations 
are summarized below (see Appendix A for more details): 

•	 Arizona.  The treatment was a reading intervention system that provides explicit, systematic 
instruction with ongoing progress monitoring.  This intervention was designed for struggling 
readers in elementary schools.  

•	 California. The treatment was Pearson Education’s Scott Foresman Science, a year-long 
science curriculum for daily instruction that is based on inquiry-rich content with a sequence 
of structured and supportive inquiry activities.  A key feature of the curriculum is the Leveled 
Reader, which helps teachers differentiate instruction by reading level.  Although the main 
purpose of the intervention is to improve science skills, the program provides reading 
supports to make the science content accessible. 

•	 Missouri.  The treatment was a supplemental reading program that provides explicit, 
systematic instruction with ongoing progress monitoring. This program was developed for 
struggling adolescent readers.   

3. Analysis Methods 

This section describes the analysis methods used to test the confirmatory hypotheses specified for the 
study.  In summary, we: 

•	 Estimated impacts and standard errors using seven different models for each of the three 
studies; 

•	 Computed differences in impacts and standard errors between models for each study; 
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•	 Estimated standard errors of these differences using bootstrapping; 
•	 Conducted formal statistical tests in each study for differences in impact estimates and 

standard errors between models (exploratory analysis);  
•	 Computed pooled estimates of the differences in impacts and standard errors by averaging the 

state-level differences (using inverse variance weights);  
•	 Tested the five hypotheses by conducting formal statistical tests for pooled differences in 

impact estimates and standard errors between models. 

The seven models are summarized in Table 4. 
These models are used to address the four research 
questions, as summarized in Table 5.  For example 
to address the first research question, we estimated 
Model A and Model B, and we compared the 
impact estimates and standard errors to test 
Hypothesis 1a and 1b, respectively. 

Table 4: Summary of the Analysis Models 

Model 

Post-test Pre-test 
Study 
Test 

State 
Test 

Study 
Test 

State 
Test 

A  

B  

C  

D  

E   

F   

G Simple average of 
two z-scores  

 

Table 5: Using Models A-G to Address the Four Research Questions 

Research 
Question 

Hypothesis 
Tests 

Comparison 
between Models  Summary of this Comparison 

1 1a and 1b 
Model A vs. 

Model B 

Comparison of a model based on study tests to a 
model based on state tests 

2 2 

Model A vs. 

Model C 

Model B vs. 

Model D 

Comparison of models based on matched pre-tests 
to models based on mismatched pre-tests 

3 3 

Model A vs. 

Model E 

Model B vs. 

Model F 

Comparison of models that include one pre-test 
covariate to models that include two pre-test 

covariates 

4 4 

Model E vs. 

Model G 

Model F vs. 

Model G 

Comparison of models in which the dependent 
variable is the average of the two post-test scores to 
models in which the dependent variable is based on 

a single post-test score 

It is important to note that Missouri was excluded from one of these comparisons. Because the data in 
Missouri included pre-test scores from the district test instead of the state test, we excluded Missouri 
from comparisons between Models B and D to address Question 2 because both models included a 
mismatched pre-test in Missouri (i.e., Model B was based on a state post-test and a mismatched 
district pre-test). Therefore, in Missouri, the comparison between Models B and D does not offer a 
test of whether mismatched pre-tests yield less precise impact estimates than matched pre-tests.  
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However, we included Missouri in all of the other comparisons because we saw no compelling reason 
to exclude it.  For example, we included Missouri in the comparison between Models A and E 
because the Missouri data, with pre-test scores from both the MAP and district tests, allowed us to 
test whether two pre-test covariates in the same domain yielded more precise impact estimates than a 
single pre-test covariate. 

Estimate impacts and standard errors.  Separately for each of the three data sets, we estimated 
seven different models of the impacts of the treatment on student reading achievement.  Each of these 
models regresses a measure of reading achievement on a treatment indicator and one or more pre-test 
measures of reading achievement.   

More details on how we specified and estimated the seven models are provided below.  Our goal was 
to specify models to be as similar as possible to the models estimated in impact evaluations for IES.  

•	  Dependent variables.  The dependent variable is a post-intervention measure of reading 
achievement.  To compute impacts in effect size units, we transformed the scale scores into z-
scores. More precisely, we re-scaled the post-test scores such that the control group had a 
mean of zero and standard deviation of one.14   

•	  Independent variables.  The independent variables include one or more pre-intervention 
measures of achievement (i.e., pre-test scores), the blocking factor (pairs of classrooms 
within a school), and student demographic characteristics (gender, race and ethnicity, and 
eligibility for free or reduced-price lunches).15  Pre-test scores were re-scaled in the same 
manner as the post-test scores. These independent variables were included in the regression 
models to improve statistical power by reducing the unexplained variation in the dependent 
variable. 

•	  Model specification.  Because the outcome variables are continuous, all seven analysis 
models were specified as linear models. Furthermore, in all three experiments, students are 
nested within classrooms, and classrooms were randomly assigned within matched pairs of 
classrooms.  Therefore, we estimated two-level models that account for the clustering of 
students within classrooms, and we included dummy  variables for each pair of classrooms.16   

14	 In principal, the magnitude of the impact estimates would be more easily interpretable if we normalized the 
test scores using the mean and standard deviation from some population of policy interest—perhaps the 
scores for all students in the same grade level and state (e.g., specifying a norming population of all 
students in grades 3-5 in the state of Arizona for the Arizona study). However, state-level means and 
standard deviations are not available for the MAP test. To ensure that we could make valid comparisons 
between state and study-administered tests, we selected a common sample so we could compute the mean 
and standard deviation for both tests:  the control group in each respective study.  For example, in Arizona, 
we normalized students’ MAP post-test scores using the mean and standard deviation of MAP post-test 
scores in the study’s control group (i.e., subtracting the mean and dividing by the standard deviation), and 
we normalized students’ state post-test scores using the mean and standard deviation of state post-test 
scores in the study’s control group. 

15	 Data on eligibility for free or reduced-price lunches were not available in California. 

16	 This model allowed schools to vary in their average achievement levels, but it specified a constant 
treatment effect, as in many educational evaluations. 
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The estimated variance at the student and classroom levels is reported for each model in 
Appendix K. 

•	 Missing covariates.  To address missing covariates, we used the dummy variable method. In 
short, the dummy variable method involves three steps:  (1) create a dummy variable that 
equals one if the value of the variable is missing and zero otherwise, (2) add the dummy 
variable to the impact model as a covariate, and (3) replace the missing value from the 
original variable with any constant, such as zero or the mean for non-missing cases (see Puma 
et al. 2009 for more details).  

The analysis sample for the confirmatory analysis was restricted to the students for which we had 
non-missing values of all four test scores:  (1) MAP post-test, (2) state post-test, (3) MAP pre-test and 
(4) state or district pre-test.  We refer to this sample as “the common sample,” to contrast it “the full 
sample” which includes all students in the sample.17   Restricting the confirmatory analysis to the 
common sample was a difficult decision because missing data are common in educational 
evaluations, and analyses of whether the choice of tests affects the impact estimates or the precision 
of the estimates would ideally account for the influence of missing data.  However, the missing data 
rate and pattern are a function of the study-specific data collection strategy that was implemented by 
the study team.  For example, the missing data rate for study-administered tests will depend on 
whether tests were administered in the students’ regular classrooms or off-site, whether active consent 
was required, and whether the study offered incentives and make-up testing dates to boost response 
rates. And given student mobility across schools, the missing data rate for state-administered tests 
may depend on whether the study collected these scores from participating schools, districts, or states.  
Therefore, to reduce the likelihood that our study findings are driven by the particular strategies that 
the three studies used in collecting the data, we decided to focus the confirmatory analysis on the 
common sample.  As an exploratory analysis, we estimated the seven models on the full sample and 
present the results in Appendix E. 

The remainder of this section describes the steps we took to use the impact estimates and standard 
errors in addressing the four research questions posed for this study. 

Compute differences in impact estimates and standard errors.  To test the specified hypotheses, 
we computed the difference in impacts and standard errors between models specified in Table 5 for 
each of the three studies. More specifically, we computed the difference in impact estimates between 
Models A and B to test Hypothesis 1a, and we computed the difference in standard error estimates 
between each pair of models specified in Table 5 to test Hypothesis 1b and Hypotheses 2-4.   

Estimate standard errors of these differences. Testing for differences between models was 
complicated by the fact that the estimates from two different models computed from the same sample 
will be correlated. To address this challenge, we developed a parametric bootstrapping approach for 
this study, as described in Appendix F. In summary, this procedure involved estimating the seven 
models in each study and using them to generate 1,000 bootstrap samples with similar distributional 
properties as the original data. In each of these 1,000 bootstrap samples, we estimated each pair of 

17	 In the analysis based on the full sample, we used the dummy variable method to address missing pre-test 
scores. 
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models (e.g., Models A and C) and computed the difference in the impact estimates and standard 
errors between models.  To obtain the standard error of each difference, we computed the standard 
deviation across the 1,000 bootstrap samples.  For more details, see Appendix F. 

Conduct formal statistical tests in each study.  While our confirmatory analysis was based on a 
pooled analysis (as described later), we first conducted exploratory hypothesis tests of whether there 
were non-zero differences in impacts and standard errors between models for each of the three 
studies. For each hypothesis, and separately in each study, we conducted a t-test. The t-statistic was 
computed as the difference in the impact or standard error estimates between the two models divided 
by the bootstrap estimate of the standard error of this difference.   

Finally, we computed the p-value associated with the formal hypothesis of no difference between 
models.  Using this approach, we conducted a formal test for each of the differences in estimates 
between models.  These p-values were not adjusted for multiple comparisons (i.e., for the fact that we 
conducted separate tests for each of the three studies) because the state-level analyses were treated as 
exploratory. 

Compute pooled estimates of the differences. To increase statistical power, we pooled the estimates 
across studies, and we based our confirmatory tests on the pooled results. In pooling across studies, 
we used standard meta-analytic techniques to “average” the estimates across the three data sets 
(Cooper, Hedges, & Valentine 2002, Lipsey & Wilson 2001).  Pooling both increases the power of 
the test and reduces the likelihood that study findings are driven by a single idiosyncratic study (e.g., 
a study with an unusual state test).   

To create a pooled estimate of the difference in impact estimates or standard error estimates between 
models, we construct a weighted average of the three state-level differences. For this analysis, we set 
the state-level weights proportional to the inverse of the variance of the state-level difference (e.g., 
the variance of the difference in standard errors between Models A and C in Arizona).  If the value of 
the underlying parameter (e.g., the difference in standard errors across models) is the same for the 
three studies, inverse variance weights yield the most precise estimates of these parameters. 

More precisely, let Δ s  be the difference between two estimates (impact estimates or standard error 

estimates) for state s, and let ( )  be the bootstrap estimate of the variance of the var Δ s Δ s . To 

construct pooled estimates of the difference between the two impact estimates or standard error 

estimates, we constructed a weighted average of the state-level estimates.  Let Wgts be the weight 

constructed for state s.  Note that Wgts is inversely proportional to the variance of the impact estimate 

for state s, as shown below, and that the weights sum to one: 
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Using these weights, we created the average difference between the corresponding estimates from  
two models, pooling across the three studies: 
 

Δ pooled = WgtAZ (Δ AZ )+WgtCA (ΔCA )+WgtMO (ΔMO )  
 
Test the five hypotheses by conducting formal statistical tests. The most important hypothesis 
tests conducted for this study are the five confirmatory tests of the study’s five hypotheses.  Each of 
the confirmatory tests involves one or more formal hypothesis tests of whether a pooled difference in 
impacts or standard errors is different from  zero.  
 
For these tests, we needed an estimate of the variance for each pooled difference. We took the 

expression for Δ pooled  given above and derived the following formula for the variance of the pooled 

difference:18    
 

var (Δ pooled )
 
−1 

1 1 1
 
=
     +
 +
( )
 ( )
 
 var Δ AZ var Δ CA var(Δ MO )


 
For each pooled difference between models, we conducted a t-test for whether the difference was 
statistically significant.  The t-statistic was computed by dividing the pooled difference by an estimate 
of its standard error: 
 

Δ 
t pooled =  

var(
pooled

Δ pooled ) 
 
From Table 5, it is clear that three of the hypotheses (2-4) involve multiple (in particular, two) 
comparisons.19 For each of these hypotheses, a significant difference in either of the two comparisons 
was treated as evidence supporting the hypothesis. Therefore, a multiple comparisons correction is 
appropriate. 
 

                                                      
18	   This formula was derived using the standard  formula for the variance of  a linear combination of  random  

variables under the assumption that the three state-level samples were independent of each other.   

19	   The multiple comparisons problem has received  substantial attention in evaluation circles in education, as 
evidenced by the convening of a working group at the Institute of Education Sciences to consider the 
challenges associated  with multiple comparisons, and the completion of a report based  on the results of this 
effort  (Schochet 2008b).  The most important problem with multiple comparisons is the risk that 
researchers will overstate their level of confidence in  estimates that, by themselves, would be classified as 
statistically significant.  



 

 

 

 

                                                      
     

  
  

  

To adjust the p-values for multiple comparisons in testing Hypotheses 2-4, we applied a Bonferroni 
correction.20  For example, to address Hypothesis 2 (mismatched pre-tests yield less precise impact 
estimates than matched pre-tests), we multiplied the p-values for each of the two comparisons by a 
factor of two to create Bonferroni-adjusted p-values.21 While the Bonferroni correction is known to be 
conservative, the evidence suggests that the difference in power between the Bonferroni correction 
and other more sophisticated methods is small when the number of comparisons is small (see 
Schochet 2008b, Table B.4).   

For the confirmatory analysis, we characterize the strength of the evidence based on the pooled 
results. We set an alpha level of .05 as our standard for evidence because it is conventional and 
consistent with the standards for hypothesis testing established by the National Center for Education 
Statistics.22  We set a more liberal alpha level of .10 as our standard for “suggestive” evidence 
because many evaluation reports identify estimates that are significant at the 10 percent level.  For 
example, to address Question 2 on the mismatch hypothesis, if either of the two tests for the pooled 
differences yields a Bonferroni-adjusted p-value of less than .05, then we would conclude that there is 
evidence in favor of the mismatch hypothesis. However, if neither of the two tests yields a p-value of 
less than .05, but at least one of them yields a p-value of less than .10, then we would conclude that 
there is suggestive evidence in favor of the mismatch hypothesis.  

20	 In implementing this approach, we combine the p-values reported in Appendix E with the number of 
comparisons required to address each of the four questions. 

21	 This is algebraically equivalent to the standard approach, which involves dividing the alpha level of the test 
(e.g., .05 or 5 percent) by a factor of two. 

22	 See these standards at http://nces.ed.gov/statprog/2002/stdtoc.asp, as downloaded on February 20, 2010. 
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D. Empirical Results 

This section presents the results of the empirical analysis that we conducted to address the study’s 
four research questions.  

1. Summary of Results  

Our analyses provide some evidence that studies with mismatched pre-tests need larger samples than 
studies with matched pre-tests, that controlling for multiple measures in the same domain can reduce 
a study’s sample size requirements (by a small amount), and that averaging two post-test scores in the 
same domain can also reduce a study’s sample size requirements (again by a small amount).  These 
results are summarized below. 

Question 1: Will impact evaluations in education yield different impact estimates and statistical 
precision of the impact estimates if they use state tests to measure student achievement at both 
baseline and follow-up instead of administering standardized tests at both points in time as part of 
the evaluation?  On average, across the three studies,23 we found no evidence of differences in 
impacts, but suggestive evidence of differences in their standard errors—in particular, that 
evaluations based on state test scores may produce larger standard errors than evaluations based on 
study-administered tests.   

Question 2: Does measuring student achievement using one type of test at baseline and the other 
type of test at follow-up reduce the statistical precision of the impact estimates?  On average, across 
the three studies, we found evidence that the answer to this question is yes.  Furthermore, on average 
in these three studies, our estimates suggest that the required sample size would be 45 percent larger 
for a mismatched state pre-test than for a matched study pre-test, if the post-test is measured using the 
study test, and 100 percent larger for a mismatched study pre-test than for a matched state pre-test, if 
the post-test is measured using the state test.   

Question 3: Does controlling for both types of student achievement measures at baseline (i.e., pre-
test scores) increase the statistical precision of the impact estimates?   On average, across the three 
studies, we found evidence that the answer to this question is yes.  In addition, on average in these 
three studies, our estimates suggest that the required sample size would be 10 percent smaller with 
both pre-tests than with only a matched study pre-test, if the post-test is measured using the study test, 
and 25 percent smaller with both pre-tests than with only a matched state pre-test, if the post-test is 
measured using the state test. However, the results seem to be attributable to a potentially anomalous 
result in one of the three studies.  Therefore, we recommend caution in interpreting the results from 
this test (see the next subsection for more details). 

23 Throughout the discussion of the study findings, we refer to the confirmatory test results based on the 
pooled estimates using language like “on average, across the three studies” or “on average in these three 
studies.” 
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Question 4: Can using both types of student achievement measures at follow-up (i.e., post-test 
scores) increase the statistical precision of the impact estimates?   On average, across the three 
studies, we found evidence that the answer to this question is yes.  When we created a composite 
measure of achievement that averages the student’s score from the state test with his or her score from 
the study-administered test, the estimated impact on the composite measure was more precisely 
estimated than the estimated impact on either of the two post-test scores individually.  In addition, on 
average in these three studies, our estimates suggest if we specify the dependent variable as the 
average of the two post-test scores, the required sample size would be 15 percent smaller than if we 
specified the study post-test as the dependent variable, and 25 percent smaller than if we specified the 
state post-test as the dependent variable.  

It is important to conclude this summary of results with a note of caution. The analysis was limited by 
the data from three relatively small random assignment studies.  These data met our requirements for 
this study because they offered pre-test scores and post-test scores from both state tests and study-
administered tests.  However, the small size of the samples limited the power of the analysis and the 
precision of the estimates. While the point estimates suggest that the sample size implications of 
choosing different tests are quite large (e.g., estimated differences in sample size requirements as 
large as 100 percent), these estimates include sampling error, so the true sample size implications may 
be substantially smaller (or larger). Therefore, we should base any conclusions about the sample size 
implications of choosing different tests on the growing body of research in this area, and not on the 
results from any single study. 

In addition, it is not clear whether the results from these three small studies generalize to the larger 
evaluations that IES typically funds. Additional studies are necessary to build the body of evidence 
researchers need to make informed decisions when designing evaluations. 

At the same time, this report provides the first empirical evidence that directly addresses these four 
questions. Despite limited statistical power, we found statistically significant evidence that the choice 
between state and study-administered tests, and the specification of the models that use them in 
estimating the impacts of educational interventions, can have important implications for the sample 
sizes required by educational impact evaluations. 

2. Confirmatory Test Results 

The remainder of this section presents the results from the confirmatory analysis designed to address 
each of the four research questions.  This analysis involves estimating the models described in Table 
4 and conducting the analysis described in Section C.  As indicated in Section C, the confirmatory 
analysis was conducted using the common sample, which excludes students with missing values for 
any of the four test scores—MAP post-test, MAP pre-test, state post-test, or state or district pre-test.  
Exploratory results for the full sample are presented in Appendix E. 

Question 1: Will impact evaluations in education yield different impact estimates and statistical 
precision of the impact estimates if they use state tests to measure student achievement at both 
baseline and follow-up instead of administering standardized tests at both points in time as part of 
the evaluation?  To address this question, we compared the impact estimates and standard errors 
from Model A (MAP post-test and MAP pre-test) to the impact estimates and standard errors from 
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Model B (state post-test and state pre-test).  For this analysis, we had no a priori expectations about 
what the results would be. 

To address Question 1, we tested two separate hypotheses: 

•	 Hypothesis 1a: Relying on study tests (Model A) yields different impacts than relying on 
state tests (Model B). 

•	 Hypothesis 1b: Relying on study tests (Model A) yields different standard errors than 
relying on state tests (Model B). 

To test these two hypotheses, we estimated Models A and B separately for each state to produce 
impact estimates and estimates of their standard errors, and we computed pooled estimates of the 
impact and standard error for each model across studies using inverse variance weights.  Then we 
tested Hypothesis 1a by assessing whether there was a significant difference between the pooled 
impact estimate for Model A and the pooled impact estimate for Model B, and we tested Hypothesis 
1b by assessing whether there was a significant difference between the pooled standard error estimate 
for Model A and the pooled standard error estimate for Model B. For more details on the analysis, see 
Section C. 

The confirmatory test results are presented in Table 6.  The left panel of Table 6 shows the results for 
Hypothesis 1a (impacts); the right panel of Table 6 shows the results for Hypothesis 1b (standard 
errors). 

Table 6 does not provide evidence supporting Hypothesis 1a.  The pooled difference in impacts 
between Models A and B was statistically insignificant.  An insignificant difference does not mean 
that the actual difference was zero, and it does not rule out the possibility that the difference was 
simply too small to detect.24 However, the results in this report provide no evidence that evaluations 
which rely on state tests will yield systematically different impact estimates than evaluations that rely 
on study-administered tests. 

24 For the Minimum Detectable Differences for all of the analyses reported in this chapter, see Appendix H, 
Exhibit H.3 and Exhibit H.5. 
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Table 6:  Comparing Effect Sizes and Standard Errors between State and Study Tests, 
Estimates to Address Question 1 

Analysis 

 Effect Sizes Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model B 
(State post, 
state pre) 

p-value† 

(Model A – 
Model B) 

Model A 
(MAP post, 
MAP pre) 

Model B 
(State post, 
state pre) 

p-value† 

(Model A – 
Model B) 

Pooled -0.050 -0.071 .340 0.101 0.126 .060* 

By state 

Arizona 

California

Missouri 

-0.126 

-0.053 

-0.028 

0.001 

-0.154 

0.004 

.537 

.103 

.719 

0.202 

0.077 

0.103 

0.200 

0.106 

0.116 

.956 

.054* 

.406 

† For the pooled analyses, which are the basis for our confirmatory tests, we report p-values that are not adjusted for 
multiple comparisons because we used a single statistical test for each of the two hypotheses (Hypothesis 1a for impacts 
or effect sizes and Hypothesis 1b for standard errors).  For the state-level analyses, we report unadjusted p-values because 
the analyses should be classified as exploratory. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. 
The estimates in this table were computed from the common sample, after excluding students with missing values in 
either of the pre-test scores or post-test scores.  For pooled estimates of the average effect size or standard error across 
studies for each model, we computed a weighted average of the state-level estimates, where the weight for each state was 
proportional to the inverse of the variance of the estimate for that state.  For the pooled hypothesis test of no difference 
between models, we computed a weighted average of the state-level differences in the estimates between models, where 
the weight for each state was proportional to the inverse of the variance of the estimated difference for that state (see 
Section C for more details). 

Table 6 provides suggestive evidence that supports Hypothesis 1b.  More specifically, we found 
that Model B (state post-test and state pre-test) produced larger standard errors than Model A (MAP 
post-test and MAP pre-test). The pooled difference in standard errors between Models A and B was 
statistically significant at the 10 percent level.25 Therefore, based on the decision rule described in 

Section C, we classify this evidence as “suggestive.”  We conclude that on average in these three 
studies, the analysis provides suggestive evidence that using state tests for both pre-test and post-test 
measures yields a less precise impact estimate than using the study-administered test for both 
measures. 

Question 2: Does measuring student achievement using one type of test at baseline and the other 
type of test at follow-up reduce the statistical precision of the impact estimates?  To address this 
question, we compared the standard errors from models that included a mismatched pre-test variable 
to the standard errors from otherwise equivalent models that included a matched pre-test.  We would 
expect that relative to a matched pre-test covariate, using a mismatched pre-test covariate would 
reduce the R-square of the impact regression, increase the estimated standard error of the impact 
estimate, and increase the sample size requirements of the evaluation, as explained more formally in 

25 The p-value of the difference is equal to .060, as shown in Exhibit 7. 
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Section B. However, whether this effect is large or small, and whether it is large enough to be 
detected in our analysis, is an empirical question. 

To address Question 2, we tested the hypothesis listed below: 

•	 Hypothesis 2: Mismatched pre-tests yield larger standard errors than matched pre-
tests. 

To test Hypothesis 2, we estimated impacts and the standard errors of the impact estimates using 
Models A, B, C, and D separately for each state, and we pooled the standard errors for each model 
across studies using inverse variance weights. Then we tested the hypothesis with two statistical 
tests—a test for whether the standard errors differ between Model A (MAP post-test and matched 
MAP pre-test) and Model C (MAP post-test and mismatched state or district pre-test), and a test for 
whether the standard errors differ between Model B (state post-test and matched state pre-test) and 
Model D (state post-test and mismatched MAP pre-test)—after correcting for multiple comparisons.  
The multiple comparisons correction allows us to conclude that we have found evidence supporting 
the hypothesis if either difference (i.e., the difference between Models A and C or the difference 
between Models B and D) is statistically significant. For more details on the analysis, see Section C. 

The confirmatory test results for Question 2 are presented in Table 7.  The left panel of Table 7 shows 
the results for the MAP post-test, comparing Models A and C; the right panel of Table 7 shows the 
results for the state post-test, comparing Models B and D.  

Table 7 provides evidence that supports Hypothesis 2.  In the pooled analysis, the estimated 
standard error was larger for Model C (MAP post-test and mismatched state or district pre-test) than 
for Model A (MAP post-test and matched MAP pre-test), and the difference was statistically 
significant at the 5 percent level, even after accounting for multiple comparisons.26  We conclude that 
on average in these three studies, the analysis provides evidence that mismatched pre-tests yield less 
precise impact estimates than matched pre-tests. 

Question 3: Does controlling for both types of student achievement measures at baseline (i.e., pre-
test scores) increase the statistical precision of the impact estimates?  To see if additional pre-test 
covariates reduce the standard error of the impact estimate, we compared the standard errors from 
models with one pre-test covariate to the standard errors from models with two pre-test covariates in 
the same domain.  We would expect the additional pre-test covariate to increase the R-square of the 
impact regression, reduce the standard error of the estimated impact, and reduce the sample size 
requirements of the evaluation, as explained more formally in Section B. However, whether this 
effect is large or small, and whether it is large enough to be detected in our analysis, is an empirical 
question. 

26 The Bonferroni-adjusted p-value of this difference equals .0102, as shown in Exhibit 7 (after rounding).  
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Table 7: Estimating the Increase in Standard Errors from a Mismatched Pre-test, 
Question 2

Analysis 

 Standard Errors Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model C 
(MAP post, 
state pre) 

p-value† 

(Model A – 
Model C) 

Model B 
(State post, 
state pre) 

Model D 
(State post, 
MAP pre) 

p-value† 

(Model B – 
Model D) 

Pooled 0.101 0.152 .010** 0.139 0.170 .515 

By state 

Arizona 

California

Missouri 

0.202 

0.077 

0.103 

0.230 

0.153 

0.129 

.282 

.059* 

.033** 

0.200 

0.106 

NA††

0.230 

0.113 

NA††

.210 

.830 

NA†† 

† For the pooled analysis, which is the basis for our confirmatory test, we report p-values that are adjusted for multiple 
comparisons because we used two statistical comparisons to test a single hypothesis (Hypothesis 2):  the adjusted p-value 
equals two times the unadjusted p-value.  As a result, some adjusted p-values may be greater than one.  For the state-level 
analyses, we report unadjusted p-values because the analyses should be classified as exploratory. 

†† Missouri was excluded from the analysis for comparisons of Models B and D because district pre-test scores were 
collected instead of state pre-test scores. This means that Model B is based on a mismatched pre-test (state post-test and 
district pre-test), and the data from Missouri cannot be used to test Hypothesis 2 when post-test scores come from state 
assessments. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. 
The estimates in this table were computed from the common sample, after excluding students with missing values in 
either of the pre-test scores or post-test scores.  For pooled estimates of the average standard error across studies for each 
model, we computed a weighted average of the state-level estimates, where the weight for each state was proportional to 
the inverse of the variance of the estimate for that state.  For the pooled hypothesis test of no difference in the standard 
error estimate between models, we computed a weighted average of the state-level differences in the estimates between 
models, where the weight for each state was proportional to the inverse of the variance of the estimated difference for that 
state (see Section C for more details).  

To address Question 3, we tested the hypothesis listed below: 

•	 Hypothesis 3: A second pre-test in the same domain reduces the standard error of the 
impact estimates. 

To test Hypothesis 3, we estimated impacts and the standard errors of the impact estimates using 
Models A, B, E, and F separately for each state, pooled the standard errors for each model across 
studies using inverse variance weights, and tested the hypothesis with two statistical tests—a test for 
whether the standard errors differ between Model A (MAP post-test and MAP pre-test) and Model E 
(MAP post-test and both pre-tests), and a test for whether the standard errors differ between Model B 
(state post-test and state pre-test) and Model F (state post-test and both pre-tests)—after correcting for 
multiple comparisons.  The multiple comparisons correction allows us to conclude that we have found 
evidence supporting the hypothesis if either difference (i.e., the difference between Models A and E 
or the difference between Models B and F) is statistically significant. For more details on the analysis, 
see Section C. 
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The confirmatory test results for Question 3 are presented in Table 8.  The left panel of Table 8 shows 
the results for comparisons between Models A and E (for the MAP post-test); the right panel of Table 
8 shows the results for comparisons between Models B and D (for the state post-test).   

Table 8 provides evidence that supports Hypothesis 3.  In the pooled analysis, the estimated 
standard error was smaller for Model E (MAP post-test and both pre-tests) than for Model A (MAP 
post-test and MAP pre-test), and the difference was statistically significant at the 1 percent level, even 
after accounting for multiple comparisons.27  Therefore, we conclude that Table 8 provides evidence 
that in these three studies, a second pre-test in the same domain increases the precision of the impact 
estimates. 

However, this result seems to be driven heavily by a potentially anomalous result in Missouri, where 
the difference in standard errors was small but highly significant.  Our investigations suggest that this 
result may be attributable to the bootstrap estimate of the correlation between the two standard error 
estimates, which is very close to one.28 Therefore, caution is warranted in interpreting the results of 
this analysis. 

Question 4: Can using both types of student achievement measures at follow-up (i.e., post-test 
scores) increase the statistical precision of the impact estimates?   In particular, we tested whether 
averaging the two post-test scores can produce more precise impact estimates than either post-test 
alone.29  As explained earlier, if the two tests provide “noisy” measures of the same underlying 
construct, then averaging the two tests could reduce the measurement error in the dependent variable, 
yield impact estimates with smaller standard errors, and reduce the sample size requirements of the 
evaluation, as shown more formally in Section B.  However, whether the simple average of the two 
tests produces impact estimates with smaller standard errors than either test individually is an 
empirical question.30 

27	 The Bonferroni-adjusted p-value for this difference is less than .001, as shown in Exhibit 9. 

28	 As a result, the standard error of the difference was close to zero.  Because this standard error enters the t-
test in the denominator of the t-statistic, a near zero standard error estimate can produce a very large t-
statistic and a very small p-value, as shown in Appendix H, Exhibit H.5. 

29	 More precisely, we took the simple mean between the student’s z-score on each of the two tests, where 
scores from each test of have been rescaled to have a mean of zero and a standard deviation of one (among 
control students).   

30	 More sophisticated weighting approaches are possible and could be tested in future work (see Schochet 
2008b).  
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Table 8: Estimating the Decrease in Standard Errors from Using Both Pre-tests, 
Question 3

Analysis 

 Standard Errors Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model E 
(MAP post, 
both pre) 

p-value† 

(Model A – 
Model E) 

Model B 
(State post, 
state pre) 

Model F 
(State post, 

both pre) 

p-value† 

(Model B – 
Model F) 

Pooled 0.101 0.096 <.001*** 0.126 0.105 .614 

By state 

Arizona 

California 

Missouri 

0.202 

0.077 

0.103 

0.206 

0.073 

0.098 

.228 

.135 

<.001*** 

0.200 

0.106 

0.116 

0.214 

0.082 

0.101 

.251 

.362 

.080* 

† For the pooled analysis, which is the basis for our confirmatory test, we report p-values that are adjusted for multiple 
comparisons because we used two statistical comparisons to test a single hypothesis (Hypothesis 3):  the adjusted p-value 
equals two times the unadjusted p-value.  As a result, some adjusted p-values may be greater than one.  For the state-level 
analyses, we report unadjusted p-values because the analyses should be classified as exploratory. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. 
For more details on the computations presented in this table, see the notes below Table 7. 

To address Question 4, we tested the hypothesis listed below: 

•	 Hypothesis 4: Models that specify the average score between the two post-tests—one 
from state tests and the other from a study-administered test—as the outcome variable 
yield smaller standard errors than models that specify either post-test individually as 
the outcome variable. 

To test Hypothesis 4, we estimated impacts and the standard errors of the impact estimates using 
Models E, F, and G separately for each state, and we pooled the standard errors for each model across 
studies using inverse variance weights.  Then we tested the hypothesis with two statistical tests—a 
test for whether the standard errors differ between Model G (average or composite post-test and both 
pre-tests) and Model E (MAP post-test and both pre-tests), and a test for whether the standard errors 
differ between Model G and Model F (state post-test and both pre-tests)—after correcting for multiple 
comparisons.  The multiple comparisons correction allows us to conclude that we have found 
evidence supporting the hypothesis if either difference (i.e., the difference between Models G and E 
or the difference between Models G and F) is statistically significant. For more details on the 
analysis, see Section C. 

Table 9 provides evidence that supports Hypothesis 4.  In the pooled analysis, the estimated 
standard error was smaller for Model G (average or composite post-test and both pre-tests) than for 
Model F (state post-test and both pre-tests), and the difference was statistically significant at the 5  
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Table 9: Estimating the Decrease in Standard Errors from Averaging the Two Post-tests, 
Question 4 

Analysis 

Standard Errors Standard Errors 

Model G 
(mean post, 

both pre) 

Model E 
(MAP post, 
both pre) 

p-value† 

(Model G – 
Model E) 

Model G 
(mean post, 

both pre) 

Model F 
(State post, 

both pre) 

p-value† 

(Model G – 
Model F) 

Pooled 0.085 0.096 .243 0.085 0.105 .035** 

By state 

Arizona 

California 

Missouri 

0.182 

0.064 

0.086 

0.206 

0.073 

0.098 

.360 

.436 

.265 

0.182 

0.064 

0.086 

0.214 

0.082 

0.101 

.187 

.132 

.146 

† For the pooled analysis, which is the basis for our confirmatory test, we report p-values that are adjusted for multiple 
comparisons because we used two statistical comparisons to test a single hypothesis (Hypothesis 4):  the adjusted p-value 
equals two times the unadjusted p-value.  As a result, some adjusted p-values may be greater than one.  For the state-level 
analyses, we report unadjusted p-values because the analyses should be classified as exploratory. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. 
For more details on the computations presented in this table, see the notes below Table 7. 

percent level, even after accounting for multiple comparisons.31  Therefore, we conclude that on 
average in these three studies, Table 9 provides evidence that specifying the outcome variable as the 
simple average between the z-scores of the two tests yields more precise impact estimates than either 
post-test individually. 

3. Differences in Sample Size Requirements 

From a practical perspective, it is helpful to translate the differences in standard errors between 
models into differences in sample size requirements.  The analysis presented in this section thus far 
holds constant other factors that influence the standard errors—most notably, the size of the sample.  
However, researchers typically choose a sample size target to achieve a particular Minimum 
Detectable Effect Size (MDES) (e.g., 0.15 standard deviations).  If researchers had evidence on the 
key power parameters (e.g., ICCs and R-squares) separately for state tests and study-administered 
tests, this would allow them to set sample size targets that account for the type of test chosen for the 
evaluation. 

How much would we expect the sample size targets to be affected by the choice between different 
tests?  This is a critically important question because the cost of an evaluation depends on both the 
per-student cost of obtaining achievement data, which is lower for state tests than study tests, and on 

31	 The Bonferroni-corrected p-value of this difference equals .034.  Therefore, the difference is significant at 
the .05 or 5 percent level. 
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the size of the sample.  To address this question, we apply standard formulas to the standard error 
estimates presented earlier in this section.  For more details on these calculations, see Appendix I.32 

Using these formulas shown in Appendix I, we estimated the consequences of choosing different tests 
for a hypothetical evaluation with 20 classrooms.  This hypothetical evaluation shares three features 
with the evaluations in Arizona, California, and Missouri:  (1) the number of classrooms is 
comparable to the sample sizes in these three studies, (2) the research design is the same as in the 
three studies (i.e., the unit of randomization is the classroom), and (3) the statistical power parameters 
are comparable by construction (because we used the pooled standard error estimates across the three 
studies in our sample size calculations for the hypothetical evaluation).33 

For each pair of models, we: 

•	 Classified one model as the “primary analysis model” and the other model as the “alternative 
analysis model”;   

•	 Set the sample size for the primary analysis model to 20 classrooms;  

•	 Estimated the Minimum Detectable Effect Size (MDES) under the primary analysis model 
with 20 classrooms; and 

•	 Computed the number of classrooms required to achieve the same MDES with the alternative 
analysis model. 

The resulting estimates are presented in Table 10. 

Table 10 suggest that the hypothetical evaluation would need a larger sample size if it relied on state 
tests to measures student achievement at baseline and follow-up than if it relied on the study-
administered test.  In particular, on average in these three studies, our best estimate suggests that 
choosing Model B over Model A would increase the required sample size by 45 percent.  Recall that 
we found suggestive evidence supporting Hypothesis 1b—that relying on state tests (Model B) yields 
less precise impact estimates than relying on study-administered tests (Model A).  For the 
hypothetical evaluation, our estimates suggest that the difference in precision translates into an 
increase in the required sample size from 20 classrooms to 29 classrooms.   

32	 In designing studies, researchers typically rely on published estimates of the intra-class correlation and the 
R-square of the regression model both within and between clusters.  For estimates from the three studies 
used in our analysis, see Appendix I. 

33	 For these calculations, we relied on the estimates from the common sample for the same reasons that we 
relied on these estimates for the confirmatory analysis (see Section C for a discussion of this choice).  
Therefore, it is important to recognize that our estimates do not account for the role of missing data in the 
determining sample size requirements.  If the two tests have very different missing data rates, this could 
produce differences in the sample size requirements that are not captured by our analysis. 
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Table 10: Sample Size Implications of Choosing Different  Design Options:  A Hypothetical RCT with 20 Classrooms 

 Primary Design Option Alternative Design Option Estimated Change in 
 Sample Required by  Primary Alternative Number of 

Analysis Number of Analysis Classrooms  Alternative Option 
 Question Data to Collect  Model Classrooms  Data to Collect  Model (95% CI)   (95% CI) 

1  Study post-test Model A  20 State post-test Model B  29 45% increase  
Study pre-test  State pre-test  (17,46) (-15%, +130%)  

2  Study post-test Model A  20  Study post-test Model C   40 100% increase 
Study pre-test  State pre-test  (22,64) (+10%, +220%) 

2 State post-test Model B  20 State post-test Model D   28 40% increase  
State pre-test Study pre-test  (14,47)  (-30%, +135%)  

3  Study post-test Model A  20  Study post-test Model E 18  10% decrease 
Study pre-test  Study pre-test  

State pre-test 
(17,20)  (-15%, 0%)  

3 State post-test Model B 20  State post-test Model F  15  25% decrease 
State pre-test Study pre-test  

State pre-test 
(13,20)  (-35%, 0%)  

4  Study post-test Model E 20   Study post-test Model G 17  15% decrease 
Study pre-test  
State pre-test 

Study pre-test  
State post-test 

(13,24)  

 

(-35%, +20%)  

State pre-test 

4 State post-test Model F  20   Study post-test Model G 15  25% decrease 
Study pre-test  
State pre-test 

Study pre-test  
State post-test 

(13,20)  (-35%, 0%)  

State pre-test 

 
Note: For the formulas used to conduct the calculations for the alternative analysis model, see Appendix I. The last two columns include approximate 95% confidence intervals, as described in Appendix I.  
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Estimates from Table 10 also suggest that the hypothetical evaluation would need a larger sample if it 
selected a mismatched pre-test than if it selected a matched pre-test.  In particular, we found that: 

•	 Choosing Model C over Model A would increase the required sample size by 100 
percent.  Recall that we found evidence supporting Hypothesis 2—that mismatched pre-tests 
yield less precise impact estimates than matched pre-tests.  For the hypothetical evaluation, 
when post-test scores come from the study-administered test, our estimates suggest that the 
decrease in precision from choosing Model C translates into an increase in the required 
sample size from 20 classrooms to 40 classrooms.   

•	 Choosing Model D over Model B would increase the required sample size by 40 percent. 
For the hypothetical evaluation, when post-test scores come from the state test, our estimates 
suggest that the decrease in precision from choosing Model D translates into an increase in 
the required sample size from 20 classrooms to 28 classrooms.   

Estimates from Table 10 suggest that the hypothetical evaluation would need a somewhat smaller 
sample if both pre-test scores were collected and included as covariates in the model, relative to 
collecting scores from a single pre-test.  In particular, we found that: 

• Choosing Model E over Model A would reduce the required sample size by 10 percent. 
Recall that we found evidence supporting Hypothesis 3—that a second pre-test covariate 
increases the precision of the impact estimates.  For the hypothetical evaluation, when post-
test scores come from the study-administered test, our estimates suggest that the increase in 
precision translates into a reduction in the required sample size from 20 classrooms to 18 
classrooms.   

•	 Choosing Model F over Model B would reduce the required sample by 25 percent. For 
the hypothetical evaluation, when post-test scores come from the state test, our estimates 
suggest that the increase in precision translates into a reduction in the required sample size 
from 20 classrooms to 15 classrooms.  

Finally, estimates from Table 10 suggest that the hypothetical evaluation would need a somewhat 
smaller sample if both post-test scores were collected and averaged together to create a composite 
post-test score, relative to relying on scores from either post-test individually.  In particular, we found 
that: 

• Choosing Model G over Model E would reduce the required sample size by 15 percent. 
Recall that we found evidence supporting Hypothesis 4—that a composite post-test increases 
the precision of the impact estimates.  For the hypothetical evaluation, when post-test scores 
come from the study-administered test, our estimates suggest that the increase in precision 
translates into a reduction in the required sample size from 20 classrooms to 17 classrooms. 

• Choosing Model G over Model F would reduce the required sample size by 25 percent. 
For the hypothetical evaluation, when post-test scores come from the state test, our estimates 
suggest that the increase in precision translates into a reduction in the required sample size 
from 20 classrooms to 15 classrooms. 

Finally, we conclude with two cautions.  First, the sample size effects of choosing the alternative 
designs over the base designs, as shown in Table 10, are measured with sampling error. For example, 
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consider the comparison between Models A and B.  While the difference in estimated standard errors 
was significant at the 10 percent level, it was insignificant at the 5 percent level.  This means that 
while our best estimate suggests that choosing Model B over Model A would increase the required 
number of classrooms by 45 percent, the 95 percent confidence interval for this effect includes zero, 
which means we cannot be 95 percent confident that the effect is not zero.  

To account for the statistical uncertainty associated with the estimated sample size requirements 
reported for the alternative models in Table 10, the last two columns of the table report approximate 
95-percent confidence intervals. The width of the confidence interval around the estimated sample 
size requirement is a measure of the uncertainty associated with the estimate. In addition, confidence 
intervals that include 20 classrooms suggest that we cannot be 95 percent confident about whether the 
true sample size requirement is greater than or less than the 20 classrooms required under the primary 
analysis model. 

Second, the generalizability of the estimates from Table 10 is limited by the scope of the data and 
research design used in the three evaluations.  The generalizability of study findings is addressed in 
the next and final section of the report.  

39 





 

 

  

   
 

 
 

 

 

 
 

 

 
    
 

   
 

 
  

 

 
  

E. 	Generalizability of Study Findings and Call for 
Additional Research 

Most evaluations of educational interventions and programs sponsored by the U.S. Department of 
Education include one or more measures of student achievement as key outcomes.  Because it is 
much less expensive to collect state test scores than to administer standardized tests, these evaluations 
are increasingly relying on state tests to provide at least some of the key achievement measures for 
the study. 

In this report, we consider the possible reasons why state tests may yield different impact estimates 
from study-administered tests.  In addition, we consider the possible reasons why the precision of the 
estimates, and thus the study sample size requirements, may depend on the choice between the two 
types of tests. Even if these factors do not drive decisions regarding which type of test to use for an 
evaluation, they may have important consequences for how large the sample needs to be, and even 
how we interpret the magnitude of the estimated achievement impacts.  Sample size implications are 
important because they have real resource implications for an individual study and for a portfolio of 
funded projects. 

In this study, we found evidence that the choice between state and study-administered tests can 
“matter” in terms of the study’s sample size requirements.  While the analysis had limited statistical 
power to detect differences, some significant differences were detected nonetheless. In particular, for 
the three studies we used for this analysis, we found some level of support, as defined earlier, for four 
hypotheses: 

•	 Hypothesis 1b: Relying on study tests (Model A) yields different standard errors than 
relying on state tests (Model B). In particular we found suggestive evidence that the standard 
errors were larger when we relied on state tests than when we relied on study-administered 
tests. 

•	 Hypothesis 2: Mismatched pre-tests yield larger standard errors than matched pre-tests. 
•	 Hypothesis 3: A second pre-test in the same domain reduces the standard error of the impact 

estimate.   
•	 Hypothesis 4: Models that specify the average score between the two post-tests—one from 

state tests and the other from a study-administered test—as the outcome variable yield 
smaller standard errors than models that specify either post-test individually as the outcome 
variable. 

However, it is important to recognize that these hypotheses are not mathematical axioms that can be 
proven or disproven to hold in all cases.  We tested these hypotheses because there are good reasons 
to believe that they will hold when other factors are held constant (as described earlier in the report).  
However, in real evaluations, other factors may vary across tests, and they may differ in important 
ways between the state tests and study-administered tests.  Therefore, we would not expect the four 
hypotheses to hold in all studies.  

41 



 

 

 

  
 

 
 

   
 

 

 
    

 
 

 
 

  

 

Two important ways in which tests may vary are their reliability and the amount of missing data.  
Both factors influence the precision of the impact estimates.  Other things held constant, we would 
expect: (1) more reliable tests to yield more precise impact estimates, and (2) tests with less missing 
data to yield more precise impact estimates.  The relative reliability of state and study-administered 
tests in this study may not be generalizable to other evaluations conducted in other states and with 
other study-administered tests.  Furthermore, the amount of missing data will vary depending on the 
tests used and the data collection strategy employed by the research team.  For state tests, the amount 
of missing data will depend on several factors, including the fraction of students exempted from state 
testing, the amount of student mobility, and whether the evaluation team collects data from schools, 
districts, or state agencies. For study-administered tests, the amount of missing data may also depend 
on whether the tests are administered in school or outside of school, as well as the incentives offered 
to students and parents to participate. More generally, there is no reason to expect that in other 
evaluations, the combined effects of reliability, missing data, and other factors on the precision of the 
impact estimates will be the same in magnitude—or even in direction—as we found for the three 
evaluations selected for this study. 

To see that the hypotheses will not hold in all cases, consider the following hypothetical examples:   

•	 Example 1.  Suppose that for the states included in the evaluation, the reliability of the state 
tests is equal to the reliability of the study-administered tests that the researchers are 
considering. In this example, we would not expect the choice between state and study-
administered tests to yield different levels of precision, and Hypothesis 1b would be false. 

•	 Example 2.  Suppose that the researchers prefer to measure student outcomes with a study-
administered test, but that missing data rates for the pre-test will be much higher for the study 
test than for the state tests (e.g., if it will be difficult to provide students with adequate 
incentives to show up for testing outside of school hours).  If the difference in missing data 
rates is sufficiently large, the mismatched state pre-test could yield more precise impact 
estimates than the matched study pre-test because the state pre-test would yield a much larger 
analysis sample than the study pre-test.  If this were true, Hypothesis 2 would be false. 

Example 1 reinforces that our study has not proved that study-administered tests always yield more 
precise impact estimates than state tests.  Example 2 reinforces that our study has not proved that 
matched pre-test will always yield more precise impact estimates than study tests.  Multiple factors 
influence the precision of the impact estimates in an educational study, and the net effect of these 
factors is theoretically ambiguous.   

Finally, one additional caution about generalizing the findings from this study to other evaluations is 
warranted: the effects of choosing different tests for the impact analysis may depend in part on the 
study’s research design.  It is well known that the precision of impact estimates depends heavily on 
the amount of unexplained variation at the level of random assignment.  Furthermore, there is some 
evidence that suggests that the ability of covariates to explain the variation in outcomes may differ 
between the student, classroom, and school levels (see Bloom et al. 2007, Xu & Nichols 2010). This 
raises the question of whether the magnitude of the differences in precision measured in this paper 
would be different in other studies that randomize either students or schools.  At the same time, we 
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would expect the direction of the effects, holding other factors constant, to be the same across study 
designs (e.g., mismatched pre-tests will reduce the precision of the impact estimates). 

While our study addresses four specific questions, the more general question of interest is the 
following: For educational impact studies, what are the consequences of using state tests instead of 
study-administered tests on the magnitude of the impact estimates and the size of the samples 
required to detect the impacts?  To build a stronger evidence base for addressing this question, it 
would be useful for researchers to conduct additional studies like the one we conducted, but with 
different samples. Additional studies, especially those based on data in other states and with different 
study-administered tests, would produce evidence on whether the four hypotheses for which we found 
support in this study usually hold, or only hold in rare cases.   

Since education studies are increasingly relying on state tests, more evidence on the sample size 
requirements for these studies would be useful—even when comparisons with study-administered 
tests are not possible.  Most of the papers that have contributed to our understanding of the sample 
size requirements in random assignment evaluations were based on data from either study-
administered tests or pre-NCLB district tests (e.g., Bloom et al. 2007). Fortunately, some researchers 
have begun to compute and publish estimates based on state tests; these estimates are more clearly 
applicable when computing sample size requirements for studies based on state tests.  For example, 
Xu and Nichols (2010) estimate key power parameters for randomized and cluster randomized 
designs based on state tests using data from Florida and North Carolina; additional studies like this 
one, but in other states, would be useful. 
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Appendix A: Description of the Three Experiments 

This appendix describes the three experiments that we have reanalyzed to address the four research 
questions specified for this project. Each study description presents information on the type of 
intervention tested, the design of the evaluation, including random assignment, the sample sizes, and 
the specific reading tests used to measure achievement in the study. Table A.1 provides a summary of 
the three studies. All three of these experiments were conducted by Empirical Education Inc. (EEI).  
The data collected for these studies are owned by the school systems involved and are not generally 
available for use by researchers. However, Empirical Education has an agreement with each school 
district to use these data for research purposes. The remainder of this appendix presents more details 
on the Arizona, California, and Missouri experiments. 

1. The Arizona Experiment 

Type of Intervention Tested 

The treatment program was a reading intervention system created for struggling elementary readers. It 
was intended to supplement core reading instruction and designed to accelerate students toward 
grade-level reading performance. The program provides explicit, systematic instruction with ongoing 
progress monitoring. Treatment classrooms received the first half of the intervention only. (Arizona 
started the program in the middle of the year and could only use half of the year-long program.)  
Teachers received a half day in-service training led by a representative from the vendor company. 
Teachers also received monthly implementation support through on-site observations and meetings 
with vendor company staff.  

Control classes received the “business as usual” program. Teachers used a kit supplied by the 
district’s core reading program designed to meet the needs of struggling readers.   

The Design of the Evaluation, Including Site Selection and Random Assignment 

The evaluation was a randomized controlled trial (RCT). The participating district was identified by 
the vendor as a district interested in the product and willing to conduct a structured research study 
with a subset of their classrooms. The district identified interested schools whose principals invited 
teachers to an after-school meeting. Teachers volunteered to participate. Twenty-two classroom 
teachers and two reading specialists volunteered for the study. 

The classroom was the unit of assignment. Matched pairs were formed from the 22 regular classroom 
teachers (i.e., those having one class of students each).  Teachers who came from the same school and 
taught the same grade were paired and a coin toss was used to randomly assign one member of each 
pair to the treatment group and the other to the control group.34   The two reading specialists were 
responsible for multiple classes:  one was responsible for six classes, and the other was responsible 

34 Students were assigned to classrooms as they normally were (non-randomly) prior to random assignment. 
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for two classes. For each reading specialist, half of the classes were assigned to the treatment group 
and half were assigned to the control group. 

Table A.1: Summary of the Three Randomized Controlled Trials 

State Intervention 
Unit of 

Randomization 
Grade 
Levels 

Number of 
Classrooms 

Number of 
Students 

AZ Supplemental reading 
program  

Classes 3-5 15 98 

CA Scott Foresman Science  Classes 3-5 20 564 

MO Supplemental reading 
program  

Classes 7-8 28 567 

The Sample Sizes 

This study involved one district, six schools, 24 teachers (and reading specialists) and 959 students 
from grades 3 – 5. For the purpose of this project, we have excluded grade 3 because state pre-tests 
were not available for that grade. In addition, the study defined a group of “focal children” on whom 
the intervention was focused. The remaining sample for the analysis included five schools, 12 
teachers, 15 classrooms and 98 students (see Table A.2). 

The Key Outcomes of Interest and Specific Measures Selected 

Study-administered standardized test: Reading test scores were obtained from a study-
administered standardized test. The pre-test consists of Northwest Evaluation Association’s Measures 
of Academic Progress (NWEA MAP) Reading Survey 2 – 5 AZ V2. The post-test consists of MAP 
Reading Goals Survey 2 – 5 AZ V2. The version of the NWEA MAP used for the study was a state-
aligned computerized adaptive assessment. 

State-mandated test: Reading test scores were also obtained from Arizona’s Instrument to Measure 
Standards (AIMS). AIMS is a vertically scaled test that is administered as part of the state assessment 
system in grades 3 – 8. For the study, the district provided 2005 AIMS reading scores as pre-test 
measures and 2006 AIMS reading scores as post-test measures for all students in grades 3 – 5. Since 
current grade 3 students were in grade 2 during the 2005 school year, they were not administered the 
AIMS and did not receive an AIMS score. 

Summary Statistics and Missing Data 

Table A.3 provides summary statistics for each of the variables used in the analysis. The final column 
presents the results of a statistical test for whether there are significant differences between the 
treatment and control samples at baseline, which could result from sampling error.35  Table A.4 
presents information on the amount of missing data for each variable used in the analysis. 

35 This statistical test accounted for the clustering of students within classrooms. 
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Table A.2: Sample Sizes for the Arizona Experiment 

Condition Schools Teachers Classrooms # of Students 

Treatment N.A. N.A. 7 44 
Control N.A. N.A. 8 54 
Total 5a 12a 15 98 
a The experiment included five schools in total, and classrooms were randomly assigned. Therefore, we do not report 

the number of schools or teachers separately for the treatment group and the control group. 

Table A.3:  Summary Statistics for the Arizona Experiment 

Variable

Treatment Group Control Group 

Significant 
Difference?Mean 

Standard 
Deviation Mean 

Standard 
Deviation 

State pre-test 401 27 401 29 No 
State post-test 431 32 437 38 No 
NWEA pre-test 194 17 192 14 No 
NWEA post-test 191 16 191 14 No 
Male .59 .72 No 
Eligible for free/reduced price lunch .68 .74 No 
Eligible for free lunch .57 .65 No 
Eligible for reduced price lunch .11 .09 No 
Asian .00 .02 No 
Black .02 .04 No 
Hispanic .75 .61 No 
White .14 .19 No 
Number of Students 44 54 

Table A.4:  Missing Data in the Arizona Experiment 

Variable 

Treatment Group Control Group 

Non-
missing 
values 

Missing 
values 

Non-
missing 
values 

Missing 
values 

State pre-test 35 9 44 10 

State post-test 44 0 52 2 

NWEA pre-test 44 0 54 0 

NWEA post-test 40 4 51 3 

Male 44 0 54 0 

Eligible for free or reduced price lunch 44 0 54 0 

Eligible for free lunch 44 0 54 0 

Eligible for reduced price lunch 44 0 54 0 

Asian 44 0 54 0 

Black 44 0 54 0 

Hispanic 44 0 54 0 

White 44 0 54 0 
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2. The California Experiment 

Type of Intervention Tested 

The treatment program was Pearson Education’s Scott Foresman Science, a year-long science 
curriculum intended to be used as daily instruction. Based on inquiry-rich content with a sequence of 
structured and supportive inquiry activities, the science curriculum provides materials for both 
students and teachers in print, video, and online. A main feature of the curriculum is the Leveled 
Reader, which is designed to provide the teacher with an easy way to differentiate instruction and 
provide reading support at different reading levels. Although the main purpose of the intervention is 
to improve science skills, the program provides reading supports to make the science content 
accessible. The experiment treated reading achievement as an outcome under the premise that 
improved reading scores could be an important impact of the program. 

Control classes received the “business as usual” science program offered by the district.  

The Design of the Evaluation, Including Site Selection and Random Assignment 

The evaluation was a randomized controlled trial (RCT). Pearson Education, the parent company of 
Scott Foresman, worked with a separate marketing company to identify districts interested in 
participating in research involving science curriculum. The district in the study was identified and 
contact information was forwarded to the study team. After contacting the district and identifying 
schools, the study team met with district staff members and principals to explain the details and 
procedures of the study. Principals identified eligible teachers, and 21 teachers volunteered to 
participate. 

The unit of randomization was the teacher. Matched pairs were formed based on school assignment 
and grade level taught. Ten pairs were formed and members of each pair were randomly assigned to 
either treatment or control. One teacher was unpaired and was randomly assigned to treatment. After 
random assignment, one control teacher moved out of the area before the beginning of the school year 
and was excluded from the study, leaving 20 teachers in the experiment. 

The Sample Sizes 

This study involved one district, two schools, 20 teachers and 616 students from grades 3 – 5. 
However, the study team identified a group of focal children prior to the experiment to whom the 
intervention was targeted. After excluding other students, the remaining sample included two schools, 
20 teachers, 20 classrooms and 564 students (see Table A.5). 

The Key Outcomes of Interest and Specific Measures Selected 

Study-administered standardized test:  Reading test scores were obtained from a study-
administered standardized test. The pre-test consisted of the Northwest Evaluation Association 
(NWEA) Achievement Level Test (ALT) of reading achievement. The post-test also consisted of the 
ALT test of Reading. This test is an adaptive and comprehensive paper and pencil test designed to 
measure growth over time. The difficulty level of the test given was determined using a short locator 
test. 
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Table A.5: Sample Sizes for the California Experiment 

No. of Schools 
No. of 

Teachers  No. of Classes  Total Students 

Treatment N.A. 11 11 320 
Control N.A. 9 9 244 
Total 2a 20b 20 564 
a 	 In this experiment, classrooms/teachers were randomly assigned. Therefore, we do not report the number of schools 

separately for the treatment group and the control group. 
b 	 One of the teachers randomly assigned to the control group moved out of the area before the start of the study and 

before student rosters were available. This teacher was not included in the study (and is not included in the table 
above). 

State-mandated test:  Pre-test and post-test reading scores were also obtained from the California 
Standards Test (CST), which is administered as part of the state assessment system in grades 2 – 11. 

Summary Statistics and Missing Data 

Table A.6 provides summary statistics for each of the variables used in the analysis. The final column 
presents the results of a statistical test for whether there are significant differences between the 
treatment and control samples at baseline, which could result from sampling error.36  Table A.7 
presents information on the amount of missing data for each variable used in the analysis. 

36 This statistical test accounted for the clustering of students within classrooms. 
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Table A.6:  Summary Statistics for the California Experiment 

Variable

Treatment Group Control Group 

Significant 
Difference?Mean 

Standard 
Deviation Mean 

Standard 
Deviation 

State pre-test 342 57 349 51 No 
State post-test 347 55 350 54 No 
NWEA pre-test 194 14 196 14 No 
NWEA post-test 203 14 203 14 No 
Male .48 .50 No 
Eligible for free/reduced price lunch NA NA No 
Eligible for free lunch NA NA No 
Eligible for reduced price lunch NA NA No 
Asian .10 .10 No 
Black .03 .04 No 
Hispanic .54 .58 No 
White .31 .27 No 
Number of Students 320 244 

Table A.7:  Missing Data in the California Experiment 

Variable 

Treatment Group Control Group 

Non-
missing 
values 

Missing 
values 

Non-
missing 
values 

Missing 
values 

State pre-test 289 31 210 34 

State post-test 301 19 235 9 

NWEA pre-test 204 116 172 72 

NWEA post-test 266 54 210 34 

Fraction male 320 0 244 0 

Eligible for free/reduced price lunch NA NA 

Fraction receiving free lunch NA NA 

Fraction receiving reduced price lunch NA NA 

Fraction Asian 320 0 244 0 

Fraction Black 320 0 244 0 

Fraction Hispanic 320 0 244 0 

Fraction White 320 0 244 0 

A-6 



 

 

 

 

 
 

 
 

 

 

 
 

  

 

 
 

 

                                                      
   

 

3. The Missouri Experiment 

Type of Intervention Tested 

The treatment program was a middle school reading curriculum created for struggling adolescent 
readers. The program is content aligned with the National Standards for Reading, and it is intended to 
supplement core reading instruction. The complete program requires 30 weeks of instruction, and it 
provides explicit, systematic instruction with ongoing progress monitoring. 

The Design of the Evaluation, Including Site Selection and Random Assignment 

The evaluation was a randomized controlled trial (RCT). The participating district was identified by 
the vendor as a district interested in the product and willing to conduct a structured research study 
with a subset of their classrooms. Researchers corresponded with district staff to explain the 
procedures. The district identified interested schools whose principals invited teachers to participate. 
Seven teachers representing two middle-schools volunteered to participate.  

Classes were the unit of assignment. For each teacher, similar classes were paired, and from each 
pair, one class was randomly assigned to the treatment group and the other class was assigned to the 
control group.  

The Sample Sizes 

This study involved one district, two schools, seven teachers, 28 classes, and 610 students from 
grades 7 and 8. However, as in Arizona, the Missouri experiment defined a group of focal children to 
whom the intervention was targeted prior to the experiment.  After excluding other students, the 
remaining sample includes two schools, seven teachers, 28 classrooms and 567 students (see Table 
A.8). 

The Key Outcomes of Interest and Specific Measures Selected 

Study-administered standardized test: Reading test scores were obtained from a study-
administered standardized test. The pre-test consists of Northwest Evaluation Association’s Measures 
of Academic Progress (NWEA MAP) Reading Survey 6+ MO V3. The post-test was the MAP 
Reading Goals Survey 6+ MO V3. The version of NWEA MAP used for this study was a state-
aligned computerized adaptive assessment. 

State-mandated test:  The district also provided results from their own testing and from the Missouri 
Assessment Program.37  The district provided pre-test scores from the district test because pre-test 
scores were not available from the Missouri Assessment Program; it provided post-test scores from 
the Missouri Assessment Program because the district test was only administered in grade 7. 

37	 Students in the sample took the state test in the previous year. However, the district was unable to provide 
state pre-test scores to the study team due to computer-related problems. 
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Table A.8: Sample Sizes for the Missouri Experiment 

Condition Schools Teachers Classrooms # of Students 

Treatment N.A. N.A. 14 274 
Control N.A. N.A. 14 293 
Total 2a 7a 28 567 
a For each teacher, one classroom was randomly assigned to the treatment group and one to the control group. 

Therefore, we do not report the number of schools or teachers separately for each group. 

Summary Statistics and Missing Data 

Table A.9 provides summary statistics for each of the variables used in the analysis. The final column 
presents the results of a statistical test for whether there are significant differences between the 
treatment and control samples at baseline, which could result from sampling error.38  Table A.10 
presents information on the amount of missing data for each variable used in the analysis. 

38 This statistical test accounted for the clustering of students within classrooms. 
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Table A.9:  Summary Statistics for the Missouri Experiment 

Variable

Treatment Group Control Group 

Significant 
Difference?Mean 

Standard 
Deviation Mean 

Standard 
Deviation 

District pre-test 40 14 38 15 No 
State post-test 663 34 658 29 No 
NWEA pre-test 216 11 214 11 No 
NWEA post-test 211 13 211 13 No 
Male .45 .51 No 
Eligible for free/reduced price lunch .86 .85 No 
Eligible for free lunch .77 .74 No 
Eligible for reduced price lunch .09 .11 No 
Asian .00 .00 No 
Black .98 .97 No 
Hispanic .00 .00 No 
White .02 .03 No 
Number of Students 274 293 

Table A.10:  Missing Data in the Missouri Experiment 

Variable 

Treatment Group Control Group 

Non-
Missing 
Values 

Missing 
Values 

Non-
Missing 
Values 

Missing 
Values 

District pre-test 253 21 247 46 
State post-test 246 28 253 40 
NWEA pre-test 256 18 260 33 
NWEA post-test 198 76 223 70 
Fraction male 274 0 293 0 
Eligible for free/reduced price lunch 257 17 253 40 
Fraction receiving free lunch 257 17 253 40 
Fraction receiving reduced price lunch 257 17 253 40 
Fraction Asian 274 0 293 0 
Fraction Black 274 0 293 0 
Fraction Hispanic 274 0 293 0 
Fraction White 274 0 293 0 
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Appendix B: Scatter Plots of Student Test Scores 

The scatter plots presented in this appendix show the relationship between student reading scores 
from two different types of tests:  (1) the NWEA study-administered test, and (2) state or district tests. 
Each exhibit presents the scatter plots for one of the three experiments. In addition, each exhibit 
includes four figures:  (1) pre-test scores for the treatment group, (2) pre-test scores for the control 
group, (3) post-test scores for the treatment group, and (4) post-test scores for the control group. 

Each point in a scatter plot represents a single student in the sample. In most figures, the points 
display student scale scores. The exception to this rule are the pre-test scores from the district test in 
Missouri, where the scores reported to the evaluation team and used in the analysis for this report are 
the raw scores. The scores have not been transformed into z-scores, as they are for the impact analysis 
presented in the text of this report. The line drawn through the points represents the best fitting 
regression line. 
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Figure B.1:  Reading Scores in the Arizona Experiment, NWEA (MAP) vs. State Test 
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Figure 3: Treatment group post-tests (N=40) Figure 4: Control group post-tests (N=50) 

Figure 1: Treatment group pre-tests (N=35) Figure 2: Control group pre-tests (N=44) 



 

 

 

 

 
   

 

 

Figure B.2: Reading Scores in the California Experiment, NWEA (ALT) vs. State Test 
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Figure 1: Treatment group pre-tests (N=179) Figure 2: Control group pre-tests (N=140) 


Figure 3: Treatment group post-tests (N=266) Figure 4: Control group post-tests (N=210) 



 

 

 

     

 
   

 

 
 

Figure B.3: Reading Scores in the Missouri Experiment, NWEA (MAP) vs. State Test 
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Figure 1: Treatment group pre-tests (N=241) Figure 2: Control group pre-tests (N=228) 


Figure 3: Treatment group post-tests (N=191) Figure 4: Control group post-tests (N=217) 



 

 

 
 
 

 

Appendix C: Quartiles of the Test Score 
Distribution 

Table C.1: Test Score Quartiles in Arizona Experiment, Control Group  

 State Test Scores  Study-Administered Test (NWEA, MAP) 

Quartiles 1 2 3 4 
Pre-test Scores 

1 (Bottom 25 percent)   16% 7%   2%  0% 

2 9% 9% 5%  2%  

3 0% 5% 7%   14% 

4 (Top 25 percent) 0%   5% 11%  9%  

 Post-test Scores 
1 14%   6% 2%  2%  

2 10%   8% 6%  2%  

3 0%   4% 12%  8%  

4 0% 8% 4%   14% 

Table C.2: Test Score Quartiles in Arizona Experiment, Treatment Group  

C-1 

 State Test Scores Study-Administered Test (NWEA, MAP)  

Quartiles 1 2 3 4 
Pre-test Scores 

1 (Bottom 25 percent)  

2 

17%  

6%  

3%  

 6% 

 3% 

 11% 

 0% 

 3% 

3  3%  14%  3%  6% 

4 (Top 25 percent) 0%   3% 9%   14% 

 Post-test Scores 
1  18%  5%  3%  0% 

2  5%  13%  3%  5% 

3  3%  8%  10%  5% 

4  0%  0%  10%  15% 



 

 

 
 
 

 

Table C.3: Test Score Quartiles in California Experiment, Control Group  

 State Test Scores  Study-Administered Test (NWEA, ALT)  

Quartiles 1 2 3 4 
Pre-test Scores 

1 (Bottom 25 percent)  

2 

14%  

7%

9%  

 7%  

1%  

6%

 1% 

 4%  

3 3% 5%  9% 9%  

4 (Top 25 percent) 1%   4% 9%   11% 

 Post-test Scores 
1 19%  5%  0%  0%  

2 5%  14%  4%  1%  

3 0%  6%  13%  6%  

4 0%  0%   7% 18%  

Table C.4: Test Score Quartiles in California Experiment, Treatment Group 
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 State Test Scores  Study-Administered Test (NWEA, ALT)  

Quartiles 1 2 3 4 
Pre-test Scores 

1 (Bottom 25 percent)  

2 

15%  

6%

6%  

 8% 

 3% 

9%

 0% 

 2% 

3 3%   6% 8%  8% 

4 (Top 25 percent) 1%   4% 5%   15% 

 Post-test Scores 
1  18%  7%  0%  0% 

2  7%  12%  6%  0% 

3  0%  6%  12%  7% 

4  0%  1%  6%  18% 
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Table C.5: Test Score Quartiles in Missouri Experiment, Control Group  

 District/State Test Scores  Study-Administered Test (NWEA, MAP) 

Quartiles 1 2 3 4
District Test Scores  Pre-test Scores 
1 (Bottom 25 percent)  

2 

 12% 

8%  

9%  

 4% 

 4% 

 7% 

 0% 

5%

3 4%   6%  7% 8%

4 (Top 25 percent) 1%   6%  7%  11% 

 State Test Scores Post-test Scores  
1 16%   6%  3% 0%

2 7%  10%   7% 1%

3 2%   6%  9% 7%

4 0%   3%  6% 17%

Table C.6: Test Score Quartiles in Missouri Experiment, Treatment Group  

 District/State Test Scores Study-Administered Test (NWEA, MAP)  

Quartiles 1 2 3 4 
 District Test Scores Pre-test Scores 

1 (Bottom 25 percent)  

2 

15%  

5%

7%  

 7% 

1%  

9%

 1% 

 5% 

3  3%  5%  7% 10% 

4 (Top 25 percent)  3%  6%  7%  9% 

 State Test Scores Post-test Scores  
1  14%  9%  1% 1% 

2 7%  8% 8%  1% 

3 3%  5% 9%  8% 

4  1%  3%  6% 16% 

Note:   In the Missouri experiment, district test scores were used as pre-test measures while state test scores were used as  
post-test measures. 





 

 

 

 

 
 

 

   

Appendix D: Estimates from Other Evaluations 

A comprehensive review of other evidence that addresses the four research questions is beyond the 
scope of this study. However, a small number of IES-funded studies have both collected reading 
scores from state or district tests and administered one or more general reading tests as part of the 
evaluation. In particular, we are aware of three such evaluations: 

1. 	 Closing the Reading Gap. This evaluation estimated the effects of four different reading 
pull-out programs for struggling readers in grades 3 and 5. This study administered two tests 
of reading comprehension at baseline and follow-up:  the Passage Comprehension test from  
the Woodcock Reading Mastery Test–Revised (Woodcock 1998), and the Group Reading 
Assessment and Diagnostic Evaluation, or GRADE (Williams 2001a, Williams 2001b). In  
addition, follow-up reading scores from the state assessments were collected. Using these 
data, the authors estimated regressions that correspond to Models A and D. For more 
information about the study, see Torgesen et al. (2007). 

 
2. 	 Evaluation of the Effectiveness of Educational Technology Interventions. This evaluation 

is estimating the impacts of education technology interventions, including some interventions 
focused on reading and other interventions focused on math. The evaluation administered two 
reading tests, the Stanford 9 (Harcourt Educational Measurement 1996) and the Test of 
Word Reading Efficiency (Torgesen, Wagner, & Rashotte 1999), and it also collected 
district or state reading scores. While the primary impact estimates  in both reports were based 
on study-administered tests, the first study report presents the results of a sensitivity analysis 
in which they estimated impacts on reading scores from district tests. However, since the 
report does not specify which pre-test variable (i.e., district or study-administered) was used 
to estimate impacts on scores from the district or state reading test, it is not clear whether the 
sensitivity analysis reflect a comparison of Models A and B or a comparison of Models A and 
D. 	For more information about the study, see Dynarski et al. (2007). 

 
3. 	 Impact Evaluation of Academic Instruction for After-School Programs. This evaluation 

is estimating the impacts of Harcourt’s Mathletics and Success For All’s Adventure Island, 
two academic programs designed for after-school programs. The evaluation administered the 
abbreviated Stanford 10 reading test (Harcourt Assessment, Inc. 2004) at baseline and follow-
up, but it also collected follow-up test scores from  district or state reading tests.  Using these 
data, the authors estimated regressions that correspond to Models A and D. For more 
information about the study, see Black et al. (2008). 

Unfortunately, none of these studies provide evidence that directly addresses any of the four research 
questions for this study. The first and third evaluations present evidence that allows us to compare 
Model A (study-administered pre-test, study-administered post-test) to Model D (study-administered 
pre-test, state or district post-test). However, this comparison does not directly address any of our four 
research questions. In summary, we are not aware of other evaluations that have produced evidence 
that directly addresses the hypotheses that we test in this study. 
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Appendix E: Estimates from the Full Sample 

Section D of this report presents estimates based on the common sample, which includes all of the 
students for which scores from all four tests were available (i.e., non-missing). The decision to focus 
the confirmatory analysis on the common sample was described and justified in Section C of the 
report. 

In this appendix, we present the results from the analysis for the full sample.  The full sample 
includes all of the observations for which the model’s dependent variable was non-missing.  Note that 
the dependent variable is the MAP test in Models A, C, and E, the state test in Models B, D, and F, 
and the average of the two post-tests in Model G (see Table 4 in Section C).  Therefore, the full 
sample analysis includes all students with non-missing MAP post-test scores for Models A, C, and E, 
all students with non-missing state post-test scores for Models B, D, and F, and all students with non-
missing scores on both post-tests for Model G. 

The results from the full sample analysis are presented in Tables E.1 – E.4.  

Table E.1: Comparing Effect Sizes and Standard Errors between State and Study Tests, 
Estimates to Address Question 1, Full Sample  

Analysis 

Standard Errors Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model B 
(State post, 
state pre) 

p-value† 

(Model A – 
Model B) 

Model A 
(MAP post, 
MAP pre) 

Model B 
(State post, 
state pre) 

p-value† 

(Model A – 
Model B) 

Pooled 0.005 -0.012 .348 0.106 0.109 .494 

By State 

Arizona -0.041 -0.094 .808 0.171 0.238 .091* 

California 0.070 -0.089 .017** 0.115 0.093 .147 

Missouri -0.019 0.060 .243 0.086 0.083 .848 
† For the pooled analyses, we report p-values that are not adjusted for multiple comparisons because we used a single 
statistical test for each of the two hypotheses (Hypothesis 1a for impacts or effect sizes and Hypothesis 1b for standard errors). 
For the state-level analyses, we report unadjusted p-values because the analyses should be classified as exploratory. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. The 
estimates in this table were computed from the full sample.  For each model, we deleted cases with missing values in the 
dependent variable, and we used the dummy variable adjustment method to address missing values in the independent 
variables. For pooled estimates of the average effect size or standard error across studies for each model, we computed a 
weighted average of the state-level estimates, where the weight for each state was proportional to the inverse of the variance of 
the estimate for that state.  For the pooled hypothesis test of no difference between models, we computed a weighted average 
of the state-level differences in the estimates between models, where the weight for each state was proportional to the inverse 
of the variance of the estimated difference for that state (see Section C for more details). 
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Table E.2: Estimating the Increase in Standard Errors from a Mismatched Pre-test, Question 2, 
Full Sample 

Analysis 

Standard Errors Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model C 
(MAP post, 
state pre) 

p-value† 

(Model A – 
Model C) 

Model B 
(State post, 
state pre) 

Model D 
(State post, 
MAP pre) 

p-value† 

(Model B – 
Model D) 

Pooled 0.106 0.128 .026** 0.118 0.211 .071* 

By State 

Arizona 0.171 0.195 .361 0.238 0.263 .306 

California 0.115 0.081 .399 0.093 0.163 .032** 

Missouri 0.086 0.119 .008*** NA NA NA 
† For the pooled analysis, we report p-values that are adjusted for multiple comparisons because we used two statistical 
comparisons to test a single hypothesis (Hypothesis 2):  the adjusted p-value equals two times the unadjusted p-value.  As a 
result, some adjusted p-values may be greater than one.  For the state-level analyses, we report unadjusted p-values because 
the analyses should be classified as exploratory. 
†† Missouri was excluded from the analysis for comparisons of Models B and D because district pre-test scores were collected 
instead of state pre-test scores. This means that Model B is based on a mismatched pre-test (state post-test and district pre-
test), and the data from Missouri cannot be used to test Hypothesis 2 when post-test scores come from state assessments. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. The 
estimates in this table were computed from the full sample.  For each model, we deleted cases with missing values in the 
dependent variable, and we used the dummy variable adjustment method to address missing values in the independent 
variables. For pooled estimates of the average standard error across studies for each model, we computed a weighted average 
of the state-level estimates, where the weight for each state was proportional to the inverse of the variance of the estimate for 
that state. For the pooled hypothesis test of no difference in the standard error estimate between models, we computed a 
weighted average of the state-level differences in the estimates between models, where the weight for each state was 
proportional to the inverse of the variance of the estimated difference for that state (see Section C for more details).  

Table E.3: Estimating the Decrease in Standard Errors from Using Both Pre-tests, Question 3, 
Full Sample 

Analysis 

Standard Errors Standard Errors 

Model A 
(MAP post, 
MAP pre) 

Model E 
(MAP post, 
both pre) 

p-value† 

(Model A – 
Model E) 

Model B 
(State post, 
state pre) 

Model F 
(State post, 

both pre) 

p-value† 

(Model B – 
Model F) 

Pooled 0.106 0.082 <.001*** 0.109 0.100 .001*** 

By State 
Arizona 0.171 0.174 .431 0.238 0.253 .242 

California 0.115 0.059 <.001*** 0.093 0.102 .736 

Missouri 0.086 0.088 .096* 0.083 0.072 .202 
† For the pooled analysis, we report p-values that are adjusted for multiple comparisons because we used two statistical 
comparisons to test a single hypothesis (Hypothesis 3):  the adjusted p-value equals two times the unadjusted p-value.  As a 
result, some adjusted p-values may be greater than one.  For the state-level analyses, we report unadjusted p-values because 
the analyses should be classified as exploratory. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. For 
more details on the computations presented in this table, see the notes below Table E.2. 
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Table E.4: Estimating the Decrease in Standard Errors from Averaging the Two Post-tests, 
Question 4, Full Sample 

Analysis 

Standard Errors Standard Errors 

Model G 
(mean post, 

both pre) 

Model E 
(MAP post, 
both pre) 

p-value† 

(Model G – 
Model E) 

Model G 
(mean post, 

both pre) 

Model F 
(State post, 

both pre) 

p-value† 

(Model G – 
Model F) 

Pooled 0.083 0.082 1.000†† 0.083 0.100 .052* 

By  State  
Arizona

California

Missouri 

0.190 

0.072 

0.073 

0.174 

0.059 

0.088 

.555 

.257 

.152 

0.190 

0.072 

0.073 

0.253 

0.102 

0.072 

.011** 

.012** 

.920 
† For the pooled analysis, we report p-values that are adjusted for multiple comparisons because we used two statistical 
comparisons to test a single hypothesis (Hypothesis 4):  the adjusted p-value equals two times the unadjusted p-value.  As 
a result, some adjusted p-values may be greater than one.  For the state-level analyses, we report unadjusted p-values 
because the analyses should be classified as exploratory. 

†† While the unadjusted p-value is less than one, the p-value after adjusting for multiple comparisons is greater than or 
equal to one. 

Notes: * indicates p < .10, ** indicates p < .05, and *** indicates p < .01. For a description of the models, see Table 4. 
For more details on the computations presented in this table, see the notes below Table E.2. 

E-3 





 

 

 

 
 

 
 

 
 

 
 

 

 

 

 
 

 

 

 

 

Appendix F: Hypothesis Tests and Minimum 
Detectable Differences 

In this study, we compared the results from pairs of different models to estimate the impacts of an 
educational intervention. For a description of all of the models, see Section C.   

To determine whether the differences in impact estimates and standard errors between different 
models could easily be attributed to sampling error, we conducted hypothesis tests.  For example, in 
comparing Models A and B to address Question 1, we conducted two hypothesis tests for each state— 
one to test the null hypothesis that the two impacts were equal, and the other to test the null 
hypothesis that the two standard errors were equal.  

However, conducting the tests was complicated by two factors.  First, the impact estimates and 
standard error estimates for any two models estimated from the same sample (e.g., the sample from 
the Arizona experiment) are positively correlated.  Therefore, hypothesis tests that are based on the 
independence assumption would be too conservative—and potentially by a large margin if the 
correlation between the estimates is high.  Second, standard estimation techniques do not yield 
estimates of the variance of the standard error estimates, much less correlations between the standard 
error estimates, which are necessary to test the hypothesis that two standard errors are equal. 

To address these challenges, we implemented, tested, and utilized a bootstrapping algorithm designed 
specifically for cluster randomized trials, including the three studies we reanalyzed for this report.  In 
most applications, researchers conduct non-parametric versions of bootstrapping to relax the 
assumptions of the mixed model.  However, in this application, our goal was not to relax these 
assumptions; instead, we simply wanted to compute variance and covariance estimates that would 
allow us to conduct these hypothesis tests. In addition, given the research design implemented in the 
three RCTs, the best approach to non-parametric bootstrapping was unclear.  In particular, it was not 
clear whether the bootstrapping algorithm should resample blocks or classes within blocks.  Given 
these uncertainties, we decided to develop a parametric bootstrapping algorithm.  For formal 
discussions of parametric bootstrapping, as well as specific approaches to implementing it, see 
Kovacevic, Huang, & You (2006) and van der Leeden, Meijer, & Busing (2005). 

In broad terms, to implement parametric bootstrapping to facilitate hypothesis tests that compare two 
models (e.g., Model A and Model B), we: 

•	 Estimated both models in the data; 

•	 Used the estimated model to produce a predicted value of the dependent variable or variables 
conditional on the fixed covariates in the model; 

•	 Added class-level and student-level noise to generate a random bootstrap value for the 
outcome for each individual;  

•	 Repeated the process 1,000 times to generate 1,000 bootstrap samples for each pair of 

models. 
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The particular bootstrapping procedure implemented for this project was developed by the authors of 
this report. Because, to the best of our knowledge, this bootstrapping algorithm has not been used in 
prior studies, we subjected the algorithm to a series of tests.  For these tests, we used data from an 
unrelated evaluation. Once the algorithm passed the tests using the data from that evaluation, we 
implemented the algorithm in the three RCTs used in this project, and re-tested the algorithm. 

The tests we developed were designed to ensure that the bootstrapping algorithm yielded bootstrap 
sample data with distributional properties that were consistent with the observed data.  In particular, 
we wanted the bootstrap sample data to match the actual data on the following dimensions: 

•	 Means and standard deviations.  The means and standard deviations of simulated outcomes 
should converge (over many replications) to the observed means and standard deviations of 
the observed data. 

•	 Correlations between the scores from the state and study-administered tests. The 
correlation between the relevant test scores (e.g., between the study-administered post-test in 
Model A and the state post-test in Model B) in the bootstrap samples should converge (over 
many replications) to the correlation in the true (observed) data set.   

In addition, we wanted to make sure that the bootstrap algorithm generated impact estimates and 
standard errors that were close to the impact estimates and standard error estimates from the two-level 
hierarchical linear model (HLM) which was used to produce the estimates reported in the main body 
of this report. In most applications, differences between the two sets of estimates would not 
necessarily suggest a problem with the bootstrapping algorithm; instead, it could indicate violations 
of the assumptions imposed by the two-level HLM.  However, since our bootstrapping algorithm was 
designed to impose the same assumptions as the two-level HLM, we would have interpreted 
differences in the estimates as evidence that the bootstrapping algorithm was not performing properly. 

More specifically, in our diagnostic testing, we checked to make sure that the bootstrapping samples 
generated estimates that were consistent with the two-level HLM estimates from the actual data with 
respect to: 

•	 Variance components in the unconditional impact model.  For each type of outcome 
(study-administered and state), the variance components estimated from a two-level 
unconditional model would converge to the observed estimates of the variance components 
from the unconditional two-level model of the observed data. By “unconditional model” we 
mean a model with no right-hand side fixed effects terms other than the intercept. 

•	 Variance components in the conditional or full impact model.  For each type of outcome 
(study-administered and state), the variance components estimated from a two-level 
conditional (fully specified) HLM would converge to the observed estimates of the variance 
components from the full two-level model of the observed data.  By “full model” we mean 
the models with pre-test and all other covariates used in the final impact models. 

•	 The treatment effect.  For each type of outcome (study-administered and state), the 
treatment impact estimate and all other fixed effects parameter estimates from the full two-
level model would converge to the observed fixed effect parameter estimates from the full 
two-level model in the observed data. 

F-2 



 

 

 

 

 

 

 

      

   

  

 
 

 

 
 

   
 

  

 

   

  

                                                      
     

  

•	 The standard error of the treatment effect.  For each type of outcome (evaluator and state), 
the standard deviation of the impact estimates over the 1,000 replicates would be equal to the 
standard errors of the impact estimates from the true (observed data). 

The remainder of this appendix describes how we constructed the bootstrap samples.  Sections 1.1 – 
1.6 describe how bootstrap samples were constructed to compare Model B to Model A.  Section 1.7 
summarizes how the same approach was used to compare other pairs of models.  Appendix G 
provides a more general description of our approach to generating correlated residuals.  Appendix H 
reports the results from this bootstrapping process.  

1. Fit Models to the Observed Data 

The impact models that were fit to the observed data correspond to a cluster randomized design where 
classes were randomized to treatment and control conditions, and students were nested in classes. For 
each model pair, we fit an unconditional model and a full model.  To describe our approach, we focus 
on the comparison between Model A and Model B to address the study’s first research question. This 
pair of models can be written as follows: 

Model A.1 - Unconditional: 
u u uYevaluator = β + α + εpost.ij 0 0. j ij 

Model A.2 - Full: 
M 

Yevaluatorpost.ij = β0 + α 0 j + β1 (Yevaluatorpre.ij ) + β 2 (Trt j ) + βm+2 (X m.ij ) + ε ij 
m=1 

where 

The “u” superscript for parameters in the unconditional model emphasizes that they are different than 
the parameters in the full model, and 

Yevaluator is the evaluator-administered (study-administered) test score, measured post 
post.ij 

intervention, of the ith student in the jth class. 

Yevaluator is the evaluator-administered test score, measured pre intervention, of the ith 

pre.ij 
student in the jth class. 

Trt j is a treatment indicator, =1 for treatment and 0 for control. 

X	 is the mth (m=1…M) additional covariates that are included in the model to 
m.ij 

account for the sampling design (e.g. dummies for class pairs) or to increase 
statistical power.39 

α0 j 
is a random intercept term for the jth class and is assumed to be distributed 

normally with mean 0 and variance τ 2 , and is assumed to be independent of ε ij . 

39	 Note that although we have subscripted X with both “i” and “j,” some of these covariates were “level-2” 
covariates (i.e., all students within a class share the same value on the variable), while others varied among 
the students within a class. 
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ε ij  is the random level-1 residual term, and is assumed to be distributed normally with 

mean 0 and variance σ 2 , and is assumed to be independent of α0 j . 

 
Model B.1 - Unconditional: 

Ystate u* u*
post.ij = β u* 

0 + α 0. j + ε ij      

    
Model B.2 - Full: 

M 

Ystate = β * + α * + β * (Ystate ) + β * (Trt ) + β *
post.ij 0 (X ) + ε *

0. j 1 pre.ij 2 j m+2 m.ij ij   
m=1 

 
where all of the terms are as described for Model A.2, but where the test scores come from the state 
test. The “u” superscript for parameters in the unconditional model emphasize that they are different 
than the parameters in the full model, and the “*” superscript on parameters in Models B.1 and B.2 
emphasize that they are different than those in Models A.1 and A.2.  
 
Each of the four models described above produces estimates of Level-2 (class) and Level-1 (student) 
variance components.  We denote these estimates as:  
 
L2Var.ModA.uc  Level 2 (class) variance from Model A.1  
L1Var.ModA.uc  Level 1 (student) variance from Model A.1 
  
L2Var.ModA.full  Level 2 (class) variance from Model A.2  
L1Var.ModA.full  Level 1 (student) variance from Model A.2 
  
L2Var.ModB.uc  Level 2 (class) variance from Model B.1  
L1Var.ModB.uc  Level 1 (student) variance from Model B.1 
  
L2Var.ModB.full  Level 2 (class) variance from Model B.2  
L1Var.ModB.full  Level 1 (student) variance from Model B.2 
 

2. Obtain Predicted Values from Full Models 

We used SAS Proc Mixed (version 9.2) to fit models to data. There are two types of predicted values 
that can be output as options to the model statement in SAS Proc Mixed. One type generates 
predicted values using only the fixed effect parameters from the model.  The second type uses both 
the fixed effect parameters and the random intercept estimates for each class to calculate the predicted 

values. We used the second type.  These predicted values, denoted as Y
~
evaluatorpost.ij and 

Y
~
state post.ij  were calculated as:  

~ 
Yevaluator = β̂

M 

+ α̂ + β̂ (Yevaluator ) + β̂ (Trt ) +  β̂ 
post.ij 0 0 j 1 pre. j 2 j m+2 (X m.ij )  

m=1 

and 
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~	 ˆ
M

Ystate = β *	 + α̂ * + β̂ * (Ystate ) + β̂ * ˆ *
post.ij 0 0 j 1 pre. j 2 (Trt j ) + βm+2 (X m.ij )  

m=1 

 
where the “hats” above the parameters indicate that they are parameter estimates. 
 

3. 	 Obtain Estimates of Variance Components when Predicted 
Values are Outcomes 

We next obtain the variance components when the predicted values are fit to unconditional models.  
The models are of the form 

Y
~ 
evaluator = β u	 + α u u

post.ij 0 0. j + ε ij  

 

Y
~ 
state = β u* + α u* u*

post.ij 0 0. j + ε ij  

 
Each of the two models described above produces estimates of Level-2 (class) and Level-1 (student) 
variance components.  We denote these estimates as:  
 
L2Var.PredA.uc Level 2 (class) variance from predicted values from Model A – unconditional 

model 
L1Var.PredA.uc Level 1 (student) variance from predicted values from Model A – unconditional 

model 
  
L2Var.PredB.uc Level 2 (class) variance from predicted values from Model B – unconditional 

model 
L1Var.PredB.uc Level 1 (student) variance from predicted values from Model B – unconditional 

model 
 

4. 	 Random Assignment of Classes to Treatment or Control 
Conditions 

Next, we randomly assigned classes in the simulated data set to treatment or control conditions.  In 
particular, to replicate the design of the three studies, we randomly  assign classes  within the blocks  
(usually teachers) in which they were randomly assigned in the actual studies.   
 
First, for the actual (observed) treatment classes, we subtracted off the treatment effect from the 
predicted values for the students assigned to the treatment group. PredA1 and PredB2 are the new 
predicted values where the treatment effect is removed (subtracted out). In particular, we 
implemented this step as follows: 
 

if Trt=0 then PredA1 = Y
~ 
evaluatorpost.ij  

if Trt=1 then PredA1 = Y
~
evaluator - β̂post.ij 2   

where 	β̂ 2 is the estimated treatment effect from Model A.2. 
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if Trt=0 then PredB1 = Y
~
state

 

post.ij   

if Trt=0 then PredB1 = Y
~
state post.ij - β̂ *

2
   

where β̂ * 
2 is the estimated treatment effect from Model B.2. 


 
Next, within each randomization block, we randomly  assigned the classes to treatment or control 

conditions. After this “simulated random  assignment of classes” we named the simulated treatment 

indicator as “RanTrt.” 

 
For the classes that were randomly assigned to the simulated treatment group (i.e. where RanTrt=1) 

we added back in the treatment effect to the predicted value, where the new predicted values were 

named PredA2 and PredB2. In particular, we implemented these steps as follows: 

 

if RanTrt=0 then PredA2 = PredA1  

if RanTrt=1 then PredA2 = PredA1+ β̂ 2  

 
if RanTrt=0 then PredB2 = PredB1  

if RanTrt=1 then PredB2 = PredB1+ β̂ * 
2  

 

5. Generating the Simulated Values 

The simulated values were obtained by  adding normally distributed random deviates to the predicted 
values. There are three kinds of random deviates added to each predicted value.  For the simulated 
values corresponding to Model A.2, they are: 
 

•	  A level-2 (class level) random deviate (named “L2NoiseA”)  
•	  A level-1 (student level) random deviate that was common to both A and B models (named 

“L1CommonNoise”)  
•	  A level-1 (student level) random deviate that was unique model A (named 

“L1UniqueNoiseA”)  
 
The simulated value corresponding to model A (named “SimA”) was obtained as:  
 
SimA = PredA2 + L2NoiseA + L1CommonNoise + L1UniqueNoiseA   
 
Similarly, the simulated value corresponding to Model B (named “SimB”) was obtained as: 
 
SimB = PredB2 + L2NoiseB + L1CommonNoise + L1UniqueNoiseB  
 
 
Details regarding the generation of the random deviates are provided in the sections that follow. 
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Generate Level-2 Random Deviates  

Often, the level-2 variance of the predicted values was less than the level-2 variance from  
unconditional models of the observed data.  To increase the level-2 variance in the simulated values, 
we add a level-2 random deviate to the predicted values. In order to accomplish this, we made a class-
level data set that had one record per class. For each of the two test scores, we generated a random  
deviate, using the SAS “normal” function with mean zero and standard deviation equal to the square 
root of the difference between the level-2 variance in the observed data and the level-2 variance of 
predicted value. 
 
For the evaluator test we named the deviate “L2NoiseA,” and it was generated as a random normal 
deviate with mean zero and variance equal to the square root of L2Var.ModA.uc -L2Var.PredA.uc. In 
particular, the SAS code used to generate this random deviate is: 
 
L2NoiseA=normal(-1)40*sqrt(L2Var.ModA.uc -L2Var.PredA.uc); 
 
Similarly, for the state test we named the deviate “L2NoiseB,” and the SAS code used to generate this 
random deviate is:  
 
L2Noise2=normal(-1)*sqrt(L2Var.ModB.uc -L2Var.PredB.uc) 
 
In cases were the level-2 variance of the predicted values was greater than the level-2 variance from  
the unconditional model of the observed data we set the noise to zero.  
 

•	  (i.e. when L2Var.PredA.uc > L2Var.ModA.uc) we set L2Noise A to zero. 

•	  (i.e. when L2Var.PredB.uc > L2Var.ModB.uc) we set L2NoiseB to zero. 

 
After one deviate for each class and each of the two test scores was created, the class-level file was 
merged back to the student-level data. Thus, each of the students within a class had the same value 
on each of these randomly generated level-2 deviates. 
 
Generate Level-1 Random Deviates  

Finally, we needed to generate level-1 random deviates in creating simulated values for each student’s  
score on both the two post-tests, the evaluator test (Model A) and the state test (Model B).  Our goal 
was to ensure that when the level-1 and level-2 random deviates were added to the predicted values of 
the model, the following conditions held for the simulated outcomes for Models A and B, which we 
call SimA and SimB, respectively:  

40	 The argument “-1” to the SAS “normal” function instructs the program to generate a random seed as the 
starting value for the function. 

F-7 

http:L2Var.ModB.uc
http:L2Var.PredB.uc
http:L2Var.ModA.uc
http:L2Var.PredA.uc
http:L2Var.PredB.uc
http:L2Noise2=normal(-1)*sqrt(L2Var.ModB.uc
http:L2Var.PredA.uc
http:L2NoiseA=normal(-1)40*sqrt(L2Var.ModA.uc
http:L2Var.PredA.uc
http:L2Var.ModA.uc


 

1. 	 The correlation between the simulated outcomes for the two tests (SimA and SimB ) equals 

the correlation between the actual outcomes for the two tests ( Yevaluatorpost.ij and 


Ystatepost.ij ). 

2. 	 The mean and standard deviation of the simulated evaluator post-test scores  (SimA ) equal 

the mean and standard deviation of the actual evaluator post-test scores  (Yevaluatorpost.ij ). 


3. 	 The mean and standard deviation of the simulated state post-test scores (SimB ) equal the 

mean and standard deviation of the actual state post-test scores  (Ystatepost.ij ). 


4. 	 The unconditional and conditional level-1 variances of the simulated evaluator post-test 

scores should equal the unconditional and conditional level 1 variances of the actual evaluator 

post-test scores. 


5. 	 The unconditional and conditional level-1 variances of the simulated state post-test scores 

should equal the unconditional and conditional level-1 variances of the actual state post-test 

scores. 


 
To meet the first condition, we assume a particular  model structure with a common component of the 
level-1 random deviate that is common to both tests, as suggested in the previous section.  For a more 
general discussion of this approach, see Appendix G.  For the specifications we used based on this 
approach, without all of the algebra, see below.  
 
To implement this approach, and satisfy  the first condition listed above, we needed to estimate the 
variance of the common level-1 error component (see Appendix G for the algebra justifying this 
formula):   
 

var(L1CommonNoise) = corr(Yevaluator
~ ~ 

post.ij ,Ystatepost .ij ) * (σ SimAσ SimB ) − cov(Yevaluatorpost.ij ,Ystate post.ij ) 

 

The second and third conditions require that σ SimA = σ Yevaluator and σ SimB = σ Ystate .

 
To estimate var(L1CommonNoise), we use the following equation:  
 

var(L1CommonNoise) = corr(Yevaluatorpost .ij ,Ystatepost .ij ) * (σ Yevaluataorσ Ystate ) − cov(Y
~
evaluator

~ 
post.ij ,Ystate post.ij ) 

 
To satisfy the fourth condition above, we needed to generate the unique random deviate for the 
simulated evaluator score such that the variance of the unique random deviate would be the difference 
between the level-1 variance of the observed data (L1Var.ModA.uc) and the level-1 variance of the 
predicted values (L1Var.PredA.uc) minus the variance of the common noise deviate 
(var(L1CommonNoise)).  The SAS code we used for the evaluator test is given below: 
 
L1UniqueNoiseA=normal(-1)*sqrt((L1Var.ModA.uc - L1Var.PredA.uc) - var(L1CommonNoise));  
 
The SAS code we used for the state test is given below: 
 
L1UniqueNoiseB=normal(-1)*sqrt((L1Var.ModB.uc - L1Var.PredB.uc) - var(L1CommonNoise));  
 
In cases where sqrt((L1Var.ModA.uc - L1Var.PredA.uc) is less than   
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var(L1CommonNoise)), we set L1UniqueNoiseA to zero. 

Likewise, in cases where sqrt((L1Var.ModB.uc - L1Var.PredB.uc) is less than 
var(L1CommonNoise)), we set L1UniqueNoiseB to zero 

6. Create Simulated Outcome Scores 

After generating the random deviates as described above, we created the simulated values of the two 
post-test scores as follows: 

SimA = PredA2 + L2NoiseA + L1CommonNoise + L1UniqueNoiseA 

and 

SimB = PredB2 + L2NoiseB + L1CommonNoise + L1UniqueNoiseB 

For each model, we estimate the following impact models (as we did for the actual data): 
M 

SimA = β0 + α 0. j + β1 (Yevaluatorpre.ij ) + β 2 (Trt j ) + βm+2 (X m.ij ) + ε ij 
m=1 

M 
* * * * * *SimB = β0 + α 0. j + β1 (Ystatepre.ij ) + β 2 (Trt j ) + βm+2 (X m.ij ) + ε ij 

m=1 

Using the results from the 1,000 replicates, we verify that all of the required characteristics of the 

simulated values described in Section 1 are satisfied. Then, using the 1,000 estimates of β̂ 2 and 
*1,000 estimates of β̂ 2 , we calculate the covariance between the estimates over the 1,000 replications.  

7. Simulations for Other Pairs of Models 

The expository example used for the previous sections was focused on the problem of obtaining the 
covariance of the impact estimates between Models A and B.  In this section we describe in more 
general terms how we adapted this approach to bootstrapping for the other model comparisons.   

Comparison of Model A to Model C (Question 2).  These models specify the same post-test 
outcome (evaluator or study-administered test) but a different pre-test.  In generating simulated values 
of the outcome variable, we relied on Model E, which specified the same post-test outcome as Models 
A and C, but included both pre-test variables as covariates.  (For a description of the models, see 
Table 4 in the text of the report.) 

Comparison of Model B to Model D (Question 2).  These models specify the same post-test 
outcome (state test) but a different pre-test.  In generating simulated values of the outcome variable, 
we relied on Model F, which specified the same post-test outcome as Models A and C, but included 
both pre-test variables as covariates.   
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Comparison of Model A to Model E (Question 3).  These models specify the same post-test 
outcome (evaluator or study-administered test).  However, while Model A includes a matched pre-test 
(evaluator or study-administered test), Model E includes both pre-tests.  In generating simulated 
values of the outcome variable, we relied on Model E because Model A could be thought of as a 
restricted version of Model E.  

Comparison of Model B to Model F (Question 3).  These models specify the same post-test 
outcome (state test).  However, while Model A includes a matched pre-test (state test), Model E 
includes both pre-tests.  In generating simulated values of the outcome variable, we relied on Model F 
because Model B could be thought of as a restricted version of Model F.  

Comparison of Model E to Model G (Question 4).  These models specify the same pre-test 
variables (both tests) but a different post-test variable (evaluator or study-administered test for Model 
E, the simple average between the two post-test scores for Model G).  In generating simulated values 
of the outcome variables, we relied on Models E and F to generate simulated scores for each of the 
two tests, and then we averaged the two scores to create the simple average composite outcome in 
each of the bootstrap samples.  

Comparison of Model B to Model F (Question 4).  These models specify the same pre-test 
variables (both tests) but a different post-test variable (state test for Model F, the simple average 
between the two post-test scores for Model G).  In generating simulated values of the outcome 
variables, we relied on Models E and F to generate simulated scores for each of the two tests, and 
then we averaged the two scores to create the simple average composite outcome in each of the 
bootstrap samples (as for the comparison between Models E and G). 

8. Bootstrap Estimates 

The bootstrap estimates of variances and covariances are presented in Appendix H. 
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Appendix G: Conceptual Approach to Generating 
Correlated Residuals for the Parametric Bootstrap 

This appendix describes our approach to generating correlated student-level residuals as part of the 
bootstrapping procedures described in Appendix F. While Appendix F is designed to help other 
researchers implement the bootstrapping approach we used, this appendix is designed to help  
technical readers understand our conceptual approach  to generating correlated error terms.  As a 
result, the notation used in this appendix is more general than the notation used in Appendix F.  
 

In general, suppose we have one linear model for each of two correlated outcome variables ( y1  and 

y2 ), as shown below: 

 

(1) y1 = X1 ′B1 + u1 + ε1  

(2) y 2 = X 2′B 2 + u 2 + ε 2  

 

where X1  is a vector of independent variables that influence y1 , X 2  is a vector of independent 

variables that influence y2 , u1  and u2  are independent classroom-level errors with a mean of zero 

and variance of σ 2 
u , and ε1  and ε 2  are student-level errors with a mean of zero, variances of σ 2 

1 and

σ 2 2
2 , respectively, and a covariance of σ 12 .

 

By estimating equations (1) and (2), we can estimate the fixed effects ( B1  and B2 ) and the three 

variances (σ 2u ,σ 2 , and 2
1 σ 2
 ). The challenge is obtaining an estimate of the covariance between the 

two student-level errors ( σ 2

12 ).  Overcoming this challenge is critical to randomly generating values 

of the outcome variables (i.e., the study-administered post-test score and the state post-test score) with 
the right correlation. 
 
To show how we can estimate the covariance between the two student-level errors, we begin by  
showing that the covariance between the two outcome variables can be expressed as in equation (3) 
below: 
 
(3)
 

cov(y 1, y 2 ) = cov(X 1′B 1 + u 1 + ε 1, X 2′ B 2 + u 2 + ε 2 ) = cov(X 1′B 1, X 2′ B 2 ) + cov(u 1,u 2 ) + cov(ε 1 ,ε 2 )

 
 
However, since the classroom-level errors are independent, and the covariance of the student-level 

errors is σ 2
12 , the covariance between the two outcomes can be expressed as in equation (4): 

 

(4) cov(y1, y2 ) = cov(X1 ′B1 + u1 + ε1, X 2 ′ B2 + u2 + ε 2 ) = cov(X1 ′B1, X 2 ′ B2 ) + σ 2
12  
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Therefore, we can rearrange terms and express the covariance between the two student-level errors 
the difference between the covariance between the two outcomes and the covariance between the 
expected values of those outcomes:  
 

(5) σ 2
12 = cov(y 1, y 2 )− cov(X 1′B 1, X 2 ′ B2 ) 

 

From the data, we can obtain estimates of cov(y1, y2 ) and cov(X1 ′B1, X 2 ′B2 ) : the latter can be 

estimated by  taking the covariance between the predicted values from the regression model.  In this 
way, we can estimate the covariance between the two student-level error terms.  
 
To generate correlated student-level residuals for the two test score outcomes in this study, we 
assume that the student-level errors can be expressed as the sum of a common component of 

achievement (ε * * 
c ) and test-specific components of achievement ( ε1 and ε 2 ), where the common and 

test-specific error components are assumed to be independent:  
 

(6) ε 1 = ε * 
c + ε 1  

(7) ε = ε * 
2 c + ε 2  

 
Under this model, the two student-level errors are correlated through the common component of 

achievement (ε ), which we assume to have a mean of zero and a variance of σ 2 
c c Under these . 

assumptions, the covariance between the two error terms ( σ 2 
12 ) equals the variance the common

component ( σ 2 
c ). 
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Appendix H: Results from Bootstrapping and 
Hypothesis Testing 

In this appendix, we provide supplementary tables of estimates for both the full sample and the 
common sample. As described in the text, the common sample excludes all of the students with 
missing values for one or more of the following four test scores:  (1) study-administered post-test, (2) 
study-administered pre-test, (3) state post-test, and (4) state pre-test. 

This appendix includes bootstrap estimates of the variances and covariances required to conduct the 
hypothesis tests described in Section C and reported in Section D.  In addition, the appendix provides 
more detail on the hypothesis test results for differences between models than provided in Section D. 

Note that given time and resource constraints, bootstrapping was conducted only for the common 
sample.  However, we used the results to conduct hypothesis tests for both samples.  To use bootstrap 
estimates from the common sample in conducting tests for the full sample, we had to make some 
assumptions.  For the impact estimates, we assumed that the correlation between the estimates would 
be the same for the full sample as for the common sample.  For the standard errors, we assumed that 
the variance of the difference between the two standard error estimates was the same for the full 
sample as for the common sample.  While these assumptions may not hold, since the common sample 
served as the basis for the confirmatory hypothesis tests, violations of these assumptions would not 
affect the study’s conclusions. 

Finally, we note that the p-values presented Tables H.2 – H.5 have been corrected for multiple 
comparisons—that is, we multiplied the unadjusted p-value by the number of comparisons.  For more 
details on this approach, see the earlier discussion in Section C.3, as well as the table notes to Tables 
7 – 10. In some instances, this approach leads to an adjusted p-value that is greater than one. In these 
instances, the p-value is displayed in the exhibits below as 1.000.   
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Table H.1: Variance and Covariance Estimates from the Bootstrapping Procedure (Common Sample) 

Question Comparison State 

Bootstrap 
Standard 
Error 1 

Bootstrap 
Standard 
Error 2 

Correlation 
Between Impact 

Estimates 

Correlation 
Between SE 
Estimates 

Does the choice of test matter? Model A vs. Model B Arizona 0.169 0.184 0.477 0.184 

California 0.077 0.093 0.819 0.672 

Missouri 0.096 0.098 0.681 0.474 

Does the mismatched pre-test matter? Model A vs. Model C Arizona 0.181 0.206 0.789 0.681 

California 0.073 0.177 0.404 0.237 

Missouri 0.093 0.122 0.839 0.742 

Model B vs. Model D Arizona 0.186 0.201 0.876 0.709 

California 0.093 0.143 0.496 0.293 

Missouri NA NA NA NA 

Does a second pre-test help? Model A vs. Model E Arizona 0.172 0.173 0.996 0.993 

California 0.077 0.077 0.995 0.985 

Missouri 0.097 0.097 0.999 0.996 

Model B vs. Model F Arizona 0.188 0.185 0.963 0.922 

California 0.119 0.085 0.699 0.439 

Missouri 0.103 0.088 0.902 0.829 

Does averaging two post-tests help? Model E vs. Model G Arizona 0.164 0.134 0.753 0.597 

California 0.074 0.065 0.828 0.603 

Missouri 0.086 0.072 0.795 0.675 

Model F vs. Model G Arizona 0.179 0.134 0.804 0.609 

California 0.081 0.065 0.857 0.657 

Missouri 0.087 0.072 0.836 0.689 
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Table H.2: Testing For Differences in Impacts Between Models (Full Sample) 

Question Comparison State 
Impact 

Estimate 1 
Impact 

Estimate 2 

Difference in 
Impact 

Estimates P-Value 

Minimum 
Detectable 
Difference 

Does the choice of test matter? Model A vs. Model B Arizona -0.041 -0.094 0.053 0.808 0.512 

California 0.070 -0.089 0.159 0.017 0.153 

Missouri -0.019 0.060 -0.079 0.243 0.157 

Pooled 0.005 -0.012 0.043 0.348 0.129 

Does the mismatched pre-test matter? Model A vs. Model C Arizona -0.041 0.109 -0.150 0.221 0.286 

California 0.070 -0.053 0.123 0.267 0.257 

Missouri -0.019 -0.047 0.028 0.673 0.154 

Pooled 0.005 -0.034 0.016 1.000 0.144 

Model B vs. Model D Arizona -0.094 -0.188 0.094 0.462 0.299 

California -0.089 0.083 -0.172 0.227 0.330 

Missouri NA NA NA NA NA 

Pooled -0.090 0.008 -0.024 1.000 0.266 

Does a second pre-test help? Model A vs. Model E Arizona -0.041 0.003 -0.044 0.005 0.035 

California 0.070 0.041 0.029 0.609 0.131 

Missouri -0.019 -0.078 0.059 0.000 0.011 

Pooled 0.005 0.004 0.049 0.000 0.013 

Model B vs. Model F Arizona -0.094 -0.142 0.048 0.484 0.160 

California -0.089 0.009 -0.098 0.199 0.177 

Missouri 0.060 0.025 0.035 0.330 0.083 

Pooled -0.012 0.011 0.018 1.000 0.082 

Does averaging two post-tests help? Model E vs. Model G Arizona 0.003 -0.042 0.045 0.728 0.303 

California 0.041 0.024 0.017 0.674 0.094 

Missouri -0.078 -0.042 -0.036 0.501 0.124 

Pooled 0.004 -0.011 0.000 1.000 0.088 

Model F vs. Model G Arizona -0.142 -0.042 -0.100 0.511 0.356 

California 0.009 0.024 -0.015 0.784 0.127 

Missouri 0.025 -0.042 0.067 0.108 0.096 

Pooled 0.011 -0.011 0.031 0.686 0.091 
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Table H.3: Testing for Differences in Impact Between Models (Common Sample) 

Question Comparison State 
Impact 

Estimate 1 
Impact 

Estimate 2 

Difference in 
Impact 

Estimates P-Value 

Minimum 
Detectable 
Difference 

Does the choice of test matter? Model A vs. Model B Arizona -0.126 0.001 -0.128 0.537 0.587 

California -0.053 -0.154 0.101 0.103 0.173 

Missouri -0.028 0.004 -0.032 0.719 0.248 

Pooled -0.050 -0.071 0.047 0.340 0.138 

Does the mismatched pre-test matter? Model A vs. Model C Arizona -0.126 0.092 -0.218 0.133 0.408 

California -0.053 -0.093 0.040 0.776 0.396 

Missouri -0.028 -0.048 0.021 0.768 0.198 

Pooled -0.050 -0.042 -0.015 1.000 0.162 

Model B vs. Model D Arizona 0.001 -0.187 0.188 0.096 0.317 

California -0.154 -0.144 -0.009 0.933 0.310 

Missouri NA NA NA NA NA 

Pooled -0.033 -0.153 0.089 0.182 0.147 

Does a second pre-test help? Model A vs. Model E Arizona -0.126 -0.055 -0.072 0.000 0.051 

California -0.053 -0.038 -0.015 0.085 0.024 

Missouri -0.028 -0.061 0.033 0.000 0.020 

Pooled -0.050 -0.047 0.007 0.387 0.015 

Model B vs. Model F Arizona 0.001 -0.059 0.061 0.299 0.165 

California -0.154 -0.122 -0.032 0.680 0.214 

Missouri 0.004 -0.009 0.013 0.789 0.141 

Pooled -0.071 -0.076 0.021 0.726 0.095 

Does averaging two post-tests help? Model E vs. Model G Arizona -0.055 -0.050 -0.005 0.974 0.395 

California -0.038 -0.080 0.042 0.304 0.115 

Missouri -0.061 -0.035 -0.026 0.664 0.169 

Pooled -0.047 -0.063 0.019 1.000 0.092 

Model F vs. Model G Arizona -0.059 -0.050 -0.009 0.943 0.365 

California -0.122 -0.080 -0.042 0.321 0.119 

Missouri -0.009 -0.035 0.026 0.645 0.156 

Pooled -0.071 -0.063 -0.017 1.000 0.092 
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Table H.4: Testing for Differences in Standard Errors Between Models (Full Sample) 

Question Comparison State 

Standard 
Error of 

Estimate 1 

Standard 
Error of 

Estimate 2 

Difference in 
Standard 

Error 
Estimates P-Value 

Minimum 
Detectable 
Difference 

Does the choice of test matter? Model A vs. Model B Arizona 0.171 0.238 -0.067 0.091 0.111 

California 0.115 0.093 0.022 0.147 0.043 

Missouri 0.086 0.083 0.003 0.848 0.044 

Pooled 0.106 0.109 0.007 0.494 0.029 

Does the mismatched pre-test matter? Model A vs. Model C Arizona 0.171 0.195 -0.024 0.361 0.074 

California 0.115 0.081 0.034 0.399 0.113 

Missouri 0.086 0.119 -0.033 0.008 0.035 

Pooled 0.106 0.128 -0.027 0.026 0.030 

Model B vs. Model D Arizona 0.238 0.263 -0.025 0.306 0.068 

California 0.093 0.163 -0.070 0.032 0.091 

Missouri NA NA NA NA NA 

Pooled 0.118 0.211 -0.041 0.071 0.055 

Does a second pre-test help? Model A vs. Model E Arizona 0.171 0.174 -0.003 0.431 0.011 

California 0.115 0.059 0.056 0.000 0.007 

Missouri 0.086 0.088 -0.002 0.096 0.003 

Pooled 0.106 0.082 0.007 0.000 0.003 

Model B vs. Model F Arizona 0.238 0.253 -0.015 0.242 0.036 

California 0.093 0.102 -0.009 0.736 0.075 

Missouri 0.083 0.072 0.011 0.202 0.024 

Pooled 0.109 0.100 0.002 0.001 0.019 

Does averaging two post-tests help? Model E vs. Model G Arizona 0.174 0.190 -0.016 0.555 0.076 

California 0.059 0.072 -0.013 0.257 0.032 

Missouri 0.088 0.073 0.015 0.152 0.029 

Pooled 0.082 0.083 0.001 1.000 0.021 

Model F vs. Model G Arizona 0.253 0.190 0.063 0.011 0.070 

California 0.102 0.072 0.030 0.012 0.033 

Missouri 0.072 0.073 -0.001 0.920 0.028 

Pooled 0.100 0.083 0.016 0.052 0.020 
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Table H.5: Testing for Differences in Standard Errors Between Models (Common Sample) 

Question Comparison State 

Standard 
Error of 

Estimate 1 

Standard 
Error of 

Estimate 2 

Difference in 
Standard 

Error 
Estimates P-Value 

Minimum 
Detectable 
Difference 

Does the choice of test matter? Model A vs. Model B Arizona 0.202 0.200 0.002 0.956 0.111 

California 0.077 0.106 -0.029 0.054 0.043 

Missouri 0.103 0.116 -0.013 0.406 0.044 

Pooled 0.101 0.126 -0.020 0.060 0.029 

Does the mismatched pre-test matter? Model A vs. Model C Arizona 0.202 0.230 -0.028 0.282 0.074 

California 0.077 0.153 -0.076 0.059 0.113 

Missouri 0.103 0.129 -0.026 0.033 0.035 

Pooled 0.101 0.152 -0.030 0.010 0.030 

Model B vs. Model D Arizona 0.200 0.230 -0.031 0.210 0.068 

California 0.106 0.113 -0.007 0.830 0.091 

Missouri NA NA NA NA NA 

Pooled 0.139 0.170 -0.022 0.515 0.055 

Does a second pre-test help? Model A vs. Model E Arizona 0.202 0.206 -0.005 0.228 0.011 

California 0.077 0.073 0.004 0.135 0.007 

Missouri 0.103 0.098 0.005 0.000 0.003 

Pooled 0.101 0.096 0.004 0.000 0.003 

Model B vs. Model F Arizona 0.200 0.214 -0.015 0.251 0.036 

California 0.106 0.082 0.024 0.362 0.075 

Missouri 0.116 0.101 0.015 0.080 0.024 

Pooled 0.126 0.105 0.007 0.614 0.019 

Does averaging two post-tests help? Model E vs. Model G Arizona 0.206 0.182 0.025 0.360 0.076 

California 0.073 0.064 0.009 0.436 0.032 

Missouri 0.098 0.086 0.012 0.265 0.029 

Pooled 0.096 0.085 0.012 0.243 0.021 

Model F vs. Model G Arizona 0.214 0.182 0.033 0.187 0.070 

California 0.082 0.064 0.018 0.132 0.033 

Missouri 0.101 0.086 0.014 0.146 0.028 

Pooled 0.105 0.085 0.017 0.035 0.020 
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Appendix I: Differences in Sample Size 
Requirements 

In this project, we are interested in estimating the consequences of choosing different pre-tests or 
post-tests on the precision of the impact estimates and ultimately on the sample size requirements of 
the study.  This appendix presents a simple approach to comparing the sample size requirements from  
two impact models based on different tests.  This approach relies on standard variance formulas, with 
some algebra, to show how much larger the sample size needs to be for a model that produces larger 
standard errors than for a model that produces smaller standard errors.  
 
The remainder of this appendix includes three sections.  The first presents standard formulas for 
minimum detectable effect size (MDES) given the design of the three RCTs that we chose to 
reanalyze.  The second shows how we can calculate the sample size implications of choosing 
different models, based on different tests, to estimate impacts.  The third provides additional details 
on the calculations we conducted for this project to generate the estimates in Table 10 presented 
earlier in the report. 
 
Formula for the Minimum Detectable Effect  
 
The minimum detectable effect size (MDES) of a design in effect size units can be calculated using: 
 

(1) MDE = [T −1 α
( ) + T −1 (β )]× Var (impact) /σ    

2 
 

where is the significance level, β is the statistical power,  T −1α (.) is the inverse of the student’s t 

distribution function with  df degrees of freedom, Var(impact)  is the variance of the impact (or 

coefficient) estimate of interest, and σ  is the standard deviation of the outcome  measure (normalized 
to 1). In the current analyses, power and significance level will be held constant (0.8 and 0.05 
respectively).   We assume  that df equals the number of teachers minus the number of randomization 

blocks minus one (Schochet 2008b).  
 
The variance of the impact estimate depends on the design of the evaluation.  In the three RCTs that 
we reanalyzed for this project, classrooms were randomly assigned to treatment and control 
conditions. More specifically, classrooms of students in the same school and grade level were paired, 
and then one member of each pair was randomly  assigned to the treatment group and the other to the 
control group (hence, essentially  blocking on teacher pairs). For this design, variance of the impact 
estimate can be calculated using: 
 

σ 2b × (1− R 2 ) σ 2 × (1− R 2 )
(2) Var(impact) = BC + w WC  

c × P × (1− P) c × n × P × (1− P) 
 
where:  
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σ 2 
b : the variance of the outcome that lies between classrooms  

σ 2 
w : the variance of the outcome that lies within classrooms 

R2
BC : the proportion of the between-classroom variance explained by covariates and blocking  

variables 

R 2
WC : the proportion of the within-classroom  variance explained by covariates and blocking 

variables 
c : the number of classrooms  
n : the average number of students per classroom 
P : the proportion of classrooms assigned to the treatment 
 
Choosing the Sample Size to Equalize the Minimum Detectable Effect for Two Different Models 
 
In this section, we show that given an actual sample size for the evaluation and estimates of the  
standard error of the impact estimate for two different models, we can compute the sample size  
required for the second model to match the MDES produced by the first model with the evaluation’s 
actual sample. Below, we refer to the first model as Model A and the second model as Model B. 
 
We begin by  defining notation for this exercise: 
 
c′ : the actual sample size in the evaluation (number of classrooms)  

c′′ : the sample size required for Model B to achieve the same MDES as Model A with the actual 
sample (with c′ classrooms)  

S A : the true standard error of the impact estimate from  estimating Model A in the actual sample, 

which equals the square root of the variance of the impact estimate  

SB : the true standard error of the impact estimate from  estimating Model B in the actual sample, 

which equals the square root of the variance of the impact estimate  

Ŝ 
A : the estimated standard error of the impact estimate from  estimating Model A in the actual 

sample  

Ŝ 
B : the estimated standard error of the impact estimate from  estimating Model B in the actual 

sample  
 
 
In addition, for our purposes, it is helpful to express the MDES as the product between two functions: 
(1) f , which is a function of the number of classrooms, and (2) g, which is a function of the vector Z, 
which captures all factors that affect the MDES other than the number of classrooms:  
 

(3) MDES = f ( )  c × g(Z ) , 

 
where: 
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( ) 1
 
f 1 α
 ≡ 
 −


c T (
 )
 +
T
 −1 (β ) , and  

c 
 2
 


( ) σ 2 2 2 
b × (1− R BC ) σ w × (1− R 2

g Z ≡ WC ) var(impact)+ = .
P × (1− P) n × P × (1− P) c 

 
To define the object of interest, c′′ , we simply set the MDES for Model B with sample size c′′ to 
equal the MDES for Model A with sample size c′ : 
 

(4)  MDES A = f (c′)× g(Z A ) = f (c′′)× g(Z B ) = MDES B ,

 
We can rearrange equation (4) to produce equation (5) below: 
 

f ( )c ′ g (Z
 B )

(5) =  
f ( )c′ ′ g (Z A )

 
Equation (6) indicates that this ratio equals the ratio of the standard errors from the two models in the 

study sample ( SB SA ): 

 

g( )Z 
(6) ( )  

B 
var(impact B ) c′ S

 = = B

g Z A var(impact )  
A c′ SA 

 
The first equality in equation (6) follows from the definition of the function g(Z); the second equality  
in equation (6) follows from the definition of a standard error, which is the square root of the 
variance. Combining equations (5) and (6), we can implicitly identify c′′ : 
 

(7) f ( )  S
c′′ = f (c′) A  

SB 

 
If we made the simplifying assumption that the changes in the degrees of freedom has zero effect on 
the MDES, which is approximately true in large samples (Schochet 2008), equation (7) reduces to 
equation (8) below: 
 

 S
2 

(8) 
 c′′ = c′×
  B
     
 SA
 

 
Equation (8) expresses c′′ explicitly as a function of the ratio of the estimated standard errors of the 
two models in the actual data, where the number of classrooms  equals c′ . 
 
Because we never know the true standard errors, we have to rely  on sample estimates. As a result, the 
ratio of the two standard errors is measured with sampling error. Fortunately, standard textbooks 
provide an approximate formula for the variance of the ratio of two random variables (e.g., see 
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Kendall, Stuart, & and Ord 1998). Equation (9) uses this formula to express the variance of the 
estimated standard errors in terms of parameters that we can estimate from the data:  
 

 Ŝ   S 
2

var ( )S 


(9) 
  var  B  ≈
  B cov(S  B , S ) var( )S− 2
 A B +
 A


    

S ˆ 
 
 2 2

A 
 
SA  
 ( )SB SASB ( )SA 

The standard errors in equation (9) were estimated as described earlier in Section C.3. The variances 
and covariances in equation (9) were estimated via bootstrapping, as described in Appendix F. 
 
Estimating the Sample Size Required Under the Alternative Model 
 
In this exercise, we used the available data to estimate the number of classrooms required under an 
alternative model (e.g., Model B) to achieve the same Minimum  Detectable Effect Size as the primary  
model (e.g., Model A). To compute a point estimate of the sample required under the alternative 
model, we used equation (7), inserted our estimates of the standard error of each model, and 
implemented an iterative procedure to solve for an estimate of the number of classrooms required 
( ĉ′′ ). 
 
To compute a 95 percent confidence interval around our point estimate, we took the four steps. First, 
we used equation (9) to estimate the variance of the ratio of the two standard error estimates 

( Ŝ ŜB A ). Second, we assumed that the distribution of the ratio of the two standard error estimates 

was approximately normal, and we computed a 95 percent confidence interval around the ratio of the 
two standard error estimates. Third, we computed the lower bound of the 95 percent confidence 

interval around ĉ′′ by estimating the sample size required under the assumption that SB SA equals 

the lower bound of the 95 percent confidence interval around Ŝ ˆ
B SA . Fourth, we computed the 

upper bound  of the 95 percent confidence interval around ĉ′′ by estimating the sample size required 

under the assumption that SB SA equals the upper bound of the 95 percent confidence interval 

around Ŝ ˆ
B SA . 

 
The results of our sample size calculations are presented in Section D, Table 10. 
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Appendix J: Correlations between Scores on State 
and Study-Administered Tests 

For this study, we selected three studies that all used study-administered tests developed by the 
Northwest Evaluation Association (NWEA). For simplicity, we refer to all of these tests as the 
Measures of Academic Progress (MAP).  An important issue in assessing the generalizability of the 
study results is to assess whether the MAP is more or less well-aligned with the state test than other 
study-administered tests.  This appendix provides some empirical evidence that users may find useful 
in reaching their own conclusions. In particular, this appendix provides estimates of the correlation 
between scores on study-administered tests and scores on state tests.  Some of these estimates were 
computed from the study sample; other estimates were obtained from the literature. 

Correlations can be used to help us assess how similar the MAP test is to other tests used by 
researchers to measure student achievement in the context of educational evaluations. If the MAP test 
is similar to other study-administered tests, we would expect: 

•	 The correlation between MAP scores and scores from other study tests taken by the same 
students to be high, and 

•	 The correlation between MAP scores and scores from state assessment tests to be similar to 
the correlation between scores from other study tests and scores from the same state 
assessment tests. 

However, it is possible that there are substantial differences between the MAP and other commonly 
used tests. Unlike the Stanford 10 (Harcourt Assessment, Inc. 2004) or the TerraNova 3 
(CTB/McGraw-Hill 2008a, 2008b), the MAP is a computer adaptive test.  If this or some other 
feature of the MAP makes it perform differently from the tests that are more commonly used in 
educational evaluations, then we might expect low correlations between the MAP scores and scores 
on these other tests. In addition, the MAP is used as a formative assessment to predict students’ scores 
on the state assessment.  Therefore, we might be concerned that the MAP was designed to be well-
aligned with state assessments, and that the correlation with state test scores would be higher for the 
MAP than for other commonly used tests that were not designed to align with state assessments. 

To allow the reader to assess the seriousness of these concerns, we have computed correlations from 
the study data and reported correlations obtained from the literature.  Note that we have not conducted 
statistical tests of the differences in correlations, and that comparisons between the correlations are 
based merely on visual inspection.  Therefore, any differences observed may be due to chance. In 
addition, we are not able to pre-specify a criterion for concluding that the MAP is “similar enough” to 
other study tests. Therefore, the analysis provided in this appendix should be treated as descriptive 
and for the reader’s information. At the same time, we expect that most readers will interpret the 
results as we have:  that the differences are small and suggest that the MAP performs in a similar 
manner to other study tests that are more commonly used in educational evaluations. 

The correlation between MAP scores and scores from other study tests.  While we did not 
conduct an exhaustive review of the evidence on these correlations, a report published by the NWEA, 
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the publisher that developed the MAP, shows that MAP scores are highly correlated with scores from  
at least one more commonly used standardized test (NWEA 2004).  This report shows correlations 
between MAP reading scores and reading scores from  the Stanford 9, the predecessor to the Stanford 
10, of 0.86 or 0.87 in elementary and middle school grades.  These correlations are of the same order 
of magnitude as the correlations between different forms of the MAP (NWEA 2004). This evidence 
suggests that the MAP test measures similar content to at least one other standardized test that has 
been commonly used in education evaluations.   
 
The correlation between MAP scores and scores from state assessment tests.  To examine the 
correlation between MAP scores and scores from state assessments, we computed these correlations 
in the three studies used in our analysis.  Table J.1 presents correlation coefficients between student 
reading scores from the MAP and student reading scores from state or district tests in each of the 
three experiments.  Correlation coefficients are computed separately by  group (treatment and control) 
and measurement period (pre-test and post-test).  In summary, we found a moderate to strong 
relationship between scores on the MAP standardized test and scores on the state or district tests.  For 
example, the post-test correlations for the treatment group were 0.69 for Arizona, 0.82 for California, 
and 0.69 for Missouri. 

An external study conducted in Pennsylvania found correlations between the MAP and the 
Pennsylvania state assessments that were higher than the correlations from the Arizona and Missouri 
studies, but comparable to the correlations from the California study.  For the one school district that 
administered the MAP, the authors reported correlations between MAP reading scores and reading 
scores from the state test in the 0.84 to  0.86 range (Thacker, Dickinson, & Koger 2004).  
 
The key question is whether these correlations are higher than for other study-administered tests, 
which would suggest that the MAP is more highly aligned with state assessments than these other 
tests. Evidence for other commonly used tests can be used to address this question.  In 2004, students 
in California in grades 2 through 11 were required to take both the California state test for English-
Language Arts and the Terra Nova CAT/6. Evidence reported in technical documents on the 
California Department of Education website indicates that the correlations between these scores  
ranged from  0.75 to 0.80 (Educational Testing Service 2009).41  These correlations are slightly lower 
but similar in magnitude to the 0.82 correlation that we computed and reported from the California 
experiment. This finding is similar to the difference found in the previously referenced study in  
Pennsylvania:  the correlation with state reading scores is slightly higher for the MAP than for the 
CAT/5, the previous version of the CAT/6 (Thacker et al. 2004).42   

Given that we have not conducted any formal hypothesis tests, we cannot say with confidence 
whether the MAP is more closely aligned with state assessments than other commonly used study-
administered tests, or whether there is no actual difference and the observed differences are due 
entirely to random chance.  Additional research would be necessary to determine whether the MAP 
falls with the range of other commonly  used terms in terms of its alignment with state assessments.   

                                                      
41   See p. 105 at www.cde.ca.gov/ta/tg/sr/documents/csttechrpt08.pdf. 

42   Tables 82 – 89 of Thacker, Dickinson & Koger (2004)  present correlations  for the MAP in the 0.83 – 0.87  
range and correlations for the CAT-5 in the 0.76 – 0.80 r ange. 
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Table J.1: Correlations between MAP Reading Test Scores and State Reading Test Scores 

State 

Pre-test Scores Post-test Scores 

Control 
Group 

Treatment 
Group Pooled 

Control 
Group 

Treatment 
Group Pooled 

Arizona 
.60 

(n=41) 
.70 

(n=127) 
.52 

(n=186) 

.57 
(n=32) 

.76 
(n=151) 

.55 
(n=175) 

.57 
(n=73) 

.76 
(n=278) 

.55 
(n=361) 

.53 
(n=41) 

.84 
(n=127) 

.73 
(n=186) 

.69 
(n=32) 

.82 
(n=151) 

.69 
(n=175) 

.60 
(n=73) 

.83 
(n=278) 

.71 
(n=361) 

California 

Missouri 

Notes:  This table is identical to Table 3 in the body of the report.  The analysis included all students with non-missing 
values for all four test scores (referred to as “the common sample” in this report). In Missouri, the study relied on pre-test 
scores from the district test instead of the state test. The p-value for each of these correlations is less than .01. 

To this point, we have used correlational evidence to assess the likelihood that the study-administered 
test used in the analysis presented in this report was in some way unusual, which would call into the 
question the generalizability of our results.  Another possible concern is that the set of state tests used 
in this analysis are in some way unusual. To address this possible concern, we examined the 
correlations between state test scores and the MAP.  If this correlation were either stronger or weaker 
in Arizona, California, and Missouri than in other states, the results from this study might be 
misleading for evaluations that draw their samples from a broader range of states.  Fortunately, 
NWEA (2004) provides estimates of the correlation between MAP scores and scores from state 
assessments in Arizona, Colorado, Illinois, Indiana, Minnesota, Nevada, South Carolina, Texas, 
Washington, and Wyoming.  The correlations reported for Arizona were comparable to the 
correlations reported for Texas and South Carolina but lower than the correlations reported for most 
other states.43 For example, the correlations in grade 5 scores were reported for seven states:  Arizona 
(r=0.69), Colorado (r=0.87), Illinois (r=0.80), Minnesota (r=0.83), Nevada (r=0.83), South Carolina 
(r=0.70), and Texas (r=0.70).  While the correlation is not reported for Missouri or California, 
estimates from an unpublished dissertation based on data from over 800 students in grades 6 – 8 in 
one rural school district in Missouri suggest that the correlation between MAP reading scores and 
reading scores from the state assessment is approximately 0.82, which is roughly comparable to the 
correlations for many other states (Shields 2008,44 NWEA 2004).  In summary, these estimates show 
that there is non-trivial variation across states in how highly correlated state reading test scores are 
with MAP reading scores. However, it is comforting that the three states chosen for our analysis are 
not clustered at either the high or low end of the distribution across states with regard to the 
correlation between state reading scores and MAP reading scores.  

43	 This could be because the Arizona test includes language arts as part of its reading test, so the scope of the 
state reading test may be broader in Arizona than in many other states (see Cronin 2004.) 

44	 See http://edt.missouri.edu/Spring2008/Dissertation/ShieldsJ-042908-D9955/research.pdf. 
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Appendix K: Estimates of Key Statistical Power 
Parameters 

In Section C, we described the two-level models that were estimated for the analysis. This appendix 
provides estimates of the variance components at both levels—the cluster or classroom level and the 
student level. It also provides estimates of the intra-class correlation from the models used to estimate 
impacts, which included the covariates described in Section C. Finally, this appendix provides 
estimates of the variance components and intra-class correlations from the unconditional models, 
without the covariates, for readers interested in assessing the increase in statistical power from the 
inclusion of these covariates.   

To interpret the magnitude of the variance components, it is important to understand the scale of the 
dependent variable.  Student test scores were normalized so that the control group has a mean of zero 
and variance of one. However, Table K.1 provides estimates of the pooled variances, including both 
treatment and control cases. As a result, the total unconditional variance for the pooled sample is not 
equal to one by construction, but it tends to be close to one.  For example, Table K.1 shows that for 
Model A, the cluster or classroom-level variance equals 0.03 and the student-level variance equals 
0.90, which suggests that the total pooled variance equals 0.93. 

Estimates of the intra-class correlations are provided to inform the design of future studies. To 
properly interpret these estimates, it is important to understand the research design of these studies.  
Each of these studies created matched pairs of classes, and randomized one class per pair to the 
treatment group and the other class to the control group.45 If the matching were successful in creating 
blocks of similar classrooms, we would expect the cluster-level variance and the intra-class 
correlation in the unconditional models—models that include indicator variables for the blocks but no 
other covariates—to be low. Note that we would not expect the estimates presented in Tables K.1 to 
generalize to other research designs. 

45 Indicator variables for the randomization block were included in the model. 

K-1 

http:group.45


 

 

Table K.1:  Estimates of the Variance Components for the Unconditional and Conditional 
Regression Models  

 

 Model 

 Cluster- and Student-Level Variance Estimates and Corresponding ICCs 

 Unconditional Models  Conditional Models 

Cluster 
 Variance 

 Student 
Variance ICC 

Cluster 
 Variance 

 Student 
Variance ICC 

Arizona Study 

A  0.03 0.90 0.031   0.05 0.41   0.109 

B  0.00 0.85 0.000  0.00 0.62  0.000 

C  0.03 0.90 0.031  0.06 0.56  0.097 

D  0.00 0.85 0.000  0.04 0.65  0.058 

E  0.03 0.90 0.031  0.06 0.38  0.136 

F  0.00 0.85 0.000  0.02 0.57  0.034 

G  0.01 0.67 0.012  0.05 0.29  0.147 

California Study 

A  0.10 1.02 0.089   0.00 0.28   0.000 

B  0.06 1.04 0.058  0.01 0.42  0.016 

C  0.10 1.02 0.089  0.03 0.48  0.067 

D  0.06 1.04 0.058  0.01 0.41  0.026 

E  0.10 1.02 0.089  0.00 0.26  0.000 

F  0.06 1.04 0.058  0.00 0.33  0.000 

G  0.08 0.93 0.079  0.00 0.20  0.000 

Missouri Study 

A  0.11 0.93 0.103   0.02 0.57   0.038 

B  0.07 1.10 0.062  0.04 0.59 0.062  

C  0.11 0.93 0.103 0.06  0.56  0.102 

D  0.07 1.10 0.062 0.03  0.65  0.039 

E  0.11 0.93 0.103  0.02 0.46 0.051  

F  0.07 1.10 0.062  0.03 0.49  0.051 

G  0.09 0.85 0.093  0.02 0.32  0.066 

Note: The conditional regression model includes one indicator variable for each matched pair of 
classrooms, and it includes all of the covariates described in Section C.  The unconditional model 
excludes the covariates but includes the indicator variables for matched pairs of classrooms.   
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